ترغب بنشر مسار تعليمي؟ اضغط هنا

Reorganization energy and polaronic effects of pentacene on NaCl films

57   0   0.0 ( 0 )
 نشر من قبل Daniel Hernangomez-Perez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to recent advances in scanning-probe technology, the electronic structure of individual molecules can now also be investigated if they are immobilized by adsorption on non-conductive substrates. As a consequence, different molecular charge-states are now experimentally accessible. Thus motivated, we investigate as an experimentally relevant example the electronic and structural properties of a NaCl(001) surface with and without pentacene adsorbed (neutral and charged) by employing density functional theory. We estimate the polaronic reorganization energy to be $E_text{reorg} simeq 0.8-1.0$ eV, consistent with experimental results obtained for molecules of similar size. To account for environmental effects on this estimate, different models for charge screening are compared. Finally, we calculate the density profile of one of the frontier orbitals for different occupation and confirm the experimentally observed localization of the charge density upon relaxation of the substrate from ab-initio calculations.



قيم البحث

اقرأ أيضاً

We present a fast and efficient tight-binding (TB) method for simulating scanning tunneling microscopy (STM) imaging of adsorbate molecules on ultrathin insulating films. Due to the electronic decoupling of the molecule from the metal surface caused by the presence of the insulating overlayer, the STM images of the frontier molecular orbitals can be simulated using a very efficient scheme, which also enables the analysis of phase shifts in the STM current. Au-pentacene complex adsorbed on a NaCl bilayer on Cu substrate provides an intricate model system, which has been previously studied both experimentally and theoretically. Our calculations indicate that the complicated shape of the molecular orbitals may cause multivalued constant current surfaces -- leading to ambiguity of the STM image. The results obtained using the TB method are found to be consistent with both DFT calculations and experimental data.
The 1/f noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies as (gate voltage)-1, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooges parameter varies as an inverse power-law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.
Here were report a study of picene nano-cristalline thin films doped with pentacene molecules. The thin films were grown by supersonic molecular beam deposition with a doping concentration that ranges between less than one molecules of pentacene ever y 104 picene molecules up to about one molecule of pentacene every 102 of picene. Morphology and opto-electronic properties of the films were studied as a function of the concentration of dopants. The optical response of the picene films, characterized by absorption, steady-state and time-resolved photoluminescence measurements, changes dramatically after the doping with pentacene. An efficient energy transfer from the picene host matrix to the pentacene guest molecules was observed giving rise to an intense photoluminescence coming out from pentacene. This efficient mechanism opens the possibility to exploit applications where the excitonic states of the guest component, pentacene, are of major interest such as MASER. The observed mechanism could also serve as prototypical system for the study of the photophysics of host guest systems based on different phenacenes and acenes.
The self-wetting properties of ionic crystal surfaces are studied, using NaCl(100) as a prototype case. The anomalously large contact angle measured long ago by Mutaftschiev is well reproduced by realistic molecular dynamics simulations. Based on the se results, and on independent determinations of the liquid-vapor and the solid-vapor interface free energy, an estimate of the solid-liquid interface free energy is extracted. The solid-vapor surface free energy turns out to be small and similar to the liquid-vapor one, providing a direct thermodynamic explanation of the reduced wetting ability of the ionic melt.
The formation of polarons due to the interaction between charge carriers and the crystal lattice has been proposed to have wide-ranging effects on charge carrier dynamics in lead--halide perovskites (LHPs). The hypothesis underlying many of those pro posals is that charge carriers are protected from scattering by their incorporation into polarons. We test that hypothesis by deriving expressions for the rates of scattering of polarons by polar-optical and acoustic phonons, and ionised impurities, which we compute for electrons in the LHPs MAPbI$_{3}$ , MAPbBr$_{3}$ and CsPbI$_{3}$. We then use the ensemble Monte Carlo method to compute electron-polaron distribution functions which satisfy a Boltzmann equation incorporating the same three scattering mechanisms. By carrying out analogous calculations for band electrons and comparing their results to those for polarons, we conclude that polaron formation impacts charge-carrier scattering rates and mobilities to a limited degree in LHPs, contrary to claims in the recent literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا