ﻻ يوجد ملخص باللغة العربية
The self-wetting properties of ionic crystal surfaces are studied, using NaCl(100) as a prototype case. The anomalously large contact angle measured long ago by Mutaftschiev is well reproduced by realistic molecular dynamics simulations. Based on these results, and on independent determinations of the liquid-vapor and the solid-vapor interface free energy, an estimate of the solid-liquid interface free energy is extracted. The solid-vapor surface free energy turns out to be small and similar to the liquid-vapor one, providing a direct thermodynamic explanation of the reduced wetting ability of the ionic melt.
Due to recent advances in scanning-probe technology, the electronic structure of individual molecules can now also be investigated if they are immobilized by adsorption on non-conductive substrates. As a consequence, different molecular charge-states
X-ray diffraction and Raman scattering measurements, and first-principles calculations are performed to search for the formation of NaCl-hydrogen compound. When NaCl and H$_{2}$ mixture is laser-heated to above 1500 K at pressures exceeding 40 GPa, w
We present a fast and efficient tight-binding (TB) method for simulating scanning tunneling microscopy (STM) imaging of adsorbate molecules on ultrathin insulating films. Due to the electronic decoupling of the molecule from the metal surface caused
Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and principal thermodynamic properties of a model solution consisting of NaCl salt dissolved in methanol solvent. Four united atom force fields for metha
We report a numerical simulation of the rate of crystal nucleation of sodium chloride from its melt at moderate supercooling. In this regime nucleation is too slow to be studied with brute-force Molecular Dynamics simulations. The melting temperature