ﻻ يوجد ملخص باللغة العربية
In all Countries the political decisions aim to achieve an almost stable configuration with a small number of new infected individuals per day due to Covid-19. When such a condition is reached, the containment effort is usually reduced in favor of a gradual reopening of the social life and of the various economical sectors. However, in this new phase, the infection spread restarts and a quantitative analysis of the regrowth is very useful. We discuss a macroscopic approach which, on the basis of the collected data in the first lockdown, after few days from the beginning of the new phase, outlines different scenarios of the Covid-19 diffusion for longer time. The purpose of this paper is a demonstration-of-concept: one takes simple growth models, considers the available data and shows how the future trend of the spread can be obtained. The method applies a time dependent carrying capacity, analogously to many macroscopic growth laws in biology, economics and population dynamics. The illustrative cases of Singapore, France, Spain and Italy are analyzed.
Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case stud
By characterising the time evolution of COVID-19 in term of its velocity (log of the new cases per day) and its rate of variation, or acceleration, we show that in many countries there has been a deceleration even before lockdowns were issued. This f
We investigated daily COVID-19 cases and deaths in the 337 lower tier local authority regions in England and Wales to better understand how the disease propagated over a 15-month period. Population density scaling models revealed residual variance an
The Covid-19 epidemic of the novel coronavirus (severe acute respiratory syndrome SARS - CoV-2) has been spreading around the world. While different containment policies using non-pharmaceutical interventions have been applied, their efficiency are n
Macroscopic growth laws, solutions of mean field equations, describe in an effective way an underlying complex dynamics. They are applied to study the spreading of infections, as in the case of CoviD-19, where the counting of the cumulated number $N(