ﻻ يوجد ملخص باللغة العربية
We study coded distributed matrix multiplication from an approximate recovery viewpoint. We consider a system of $P$ computation nodes where each node stores $1/m$ of each multiplicand via linear encoding. Our main result shows that the matrix product can be recovered with $epsilon$ relative error from any $m$ of the $P$ nodes for any $epsilon > 0$. We obtain this result through a careful specialization of MatDot codes -- a class of matrix multiplication codes previously developed in the context of exact recovery ($epsilon=0$). Since prior results showed that MatDot codes achieve the best exact recovery threshold for a class of linear coding schemes, our result shows that allowing for mild approximations leads to a system that is nearly twice as efficient as exact reconstruction. As an additional contribution, we develop an optimization framework based on alternating minimization that enables the discovery of new codes for approximate matrix multiplication.
In this paper, we introduce the Variable Coded Distributed Batch Matrix Multiplication (VCDBMM) problem which tasks a distributed system to perform batch matrix multiplication where matrices are not necessarily distinct among batch jobs. Most coded m
Consider a multi-cell mobile edge computing network, in which each user wishes to compute the product of a user-generated data matrix with a network-stored matrix. This is done through task offloading by means of input uploading, distributed computin
We consider the problem of designing codes with flexible rate (referred to as rateless codes), for private distributed matrix-matrix multiplication. A master server owns two private matrices $mathbf{A}$ and $mathbf{B}$ and hires worker nodes to help
This paper investigates the problem of Secure Multi-party Batch Matrix Multiplication (SMBMM), where a user aims to compute the pairwise products $mathbf{A}divideontimesmathbf{B}triangleq(mathbf{A}^{(1)}mathbf{B}^{(1)},ldots,mathbf{A}^{(M)}mathbf{B}^
Although the matrix multiplication plays a vital role in computational linear algebra, there are few efficient solutions for matrix multiplication of the near-sparse matrices. The Sparse Approximate Matrix Multiply (SpAMM) is one of the algorithms to