ترغب بنشر مسار تعليمي؟ اضغط هنا

Lagrangian study of temporal changes of a surface flow through the Kamchatka Strait

125   0   0.0 ( 0 )
 نشر من قبل Michael Uleysky
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Lagrangian methods we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time scales. Strong seasonality in surface outflow through the strait could be explained by temporal changes in the wind stress over the northern and western Bering Sea slopes. Interannual changes in a surface outflow through the Kamchatka Strait correlate significantly with the Near Strait inflow and Bering Strait outflow. Enhanced westward surface flow of the Alaskan Stream across the $174^circ$ E section in the northern North Pacific is accompanied by an increased inflow into the Bering Sea through the Near Strait. In summer, the surface flow pattern in the Kamchatka Strait is determined by passage of anticyclonic and cyclonic mesoscale eddies. The wind stress over the Bering basin in winter - spring is responsible for eddy generation in the region.



قيم البحث

اقرأ أيضاً

Lagrangian approach is applied to study near-surface large-scale transport in the Kuroshio Extension area using a simulation with synthetic particles advected by AVISO altimetric velocity field. A material line technique is applied to find the origin of water masses in cold-core cyclonic rings pinched off from the jet in summer 2011. Tracking and Lagrangian maps provide the evidence of cross-jet transport. Fukushima derived caesium isotopes are used as Lagrangian tracers to study transport and mixing in the area a few months after the March of 2011 tsunami that caused a heavy damage of the Fukushima nuclear power plant (FNPP). Tracking maps are computed to trace the origin of water parcels with measured levels of Cs-134 and Cs-137 concentrations collected in two R/V cruises in June and July 2011 in the large area of the Northwest Pacific. It is shown that Lagrangian simulation is useful to finding the surface areas that are potentially dangerous due to the risk of radioactive contamination. The results of simulation are supported by tracks of the surface drifters which were deployed in the area.
We use dynamical systems approach and Lagrangian tools to study surface transport and mixing of water masses in a selected coastal region of the Japan Sea with moving mesoscale eddies associated with the Primorskoye Current. Lagrangian trajectories a re computed for a large number of particles in an interpolated velocity field generated by a numerical regional multi-layer eddy-resolving circulation model. We compute finite-time Lyapunov exponents for a comparatively long period of time by the method developed and plot the Lyapunov synoptic map quantifying surface transport and mixing in that region. This map uncovers the striking flow structures along the coast with a mesoscale eddy street and repelling material lines. We propose new Lagrangian diagnostic tools --- the time of exit of particles off a selected box, the number of changes of the sign of zonal and meridional velocities --- to study transport and mixing by a pair of strongly interacting eddies often visible at sea-surface temperature satellite images in that region. We develop a technique to track evolution of clusters of particles, streaklines and material lines. The Lagrangian tools used allow us to reveal mesoscale eddies and their structure, to track different phases of the coastal flow, to find inhomogeneous character of transport and mixing on mesoscales and submesoscales and to quantify mixing by the values of exit times and the number of times particles wind around the eddys center.
In the past decades, boreal summers have been characterized by an increasing number of extreme weather events in the Northern Hemisphere extratropics, including persistent heat waves, droughts and heavy rainfall events with significant social, econom ic and environmental impacts. Many of these events have been associated with the presence of anomalous large-scale atmospheric circulation patterns, in particular persistent blocking situations, i.e., nearly stationary spatial patterns of air pressure. To contribute to a better understanding of the emergence and dynamical properties of such situations, we construct complex networks representing the atmospheric circulation based on Lagrangian trajectory data of passive tracers advected within the atmospheric flow. For these Lagrangian flow networks, we study the spatial patterns of selected node properties prior to, during and after different atmospheric blocking events in Northern Hemisphere summer. We highlight the specific network characteristics associated with the sequence of strong blocking episodes over Europe during summer 2010 as an illustrative example. Our results demonstrate the ability of the node degree, entropy and harmonic closeness centrality based on outgoing links to trace important spatio-temporal characteristics of atmospheric blocking events. In particular, all three measures capture the effective separation of the stationary pressure cell forming the blocking high from the normal westerly flow and the deviation of the main atmospheric currents around it. Our results suggest the utility of further exploiting the Lagrangian flow network approach to atmospheric circulation in future targeted diagnostic and prognostic studies.
143 - Chirag Dhara 2020
Changes in the atmospheric composition alter the magnitude and partitioning between the downward propagating solar and atmospheric longwave radiative fluxes heating the Earths surface. These changes are computed by radiative transfer codes in Global Climate Models, and measured with high precision at surface observation networks. Changes in radiative heating signify changes in the global surface temperature and hydrologic cycle. Here, we develop a conceptual framework using an Energy Balance Model to show that first order changes in the hydrologic cycle are mainly associated with changes in solar radiation, while that in surface temperature are mainly associated with changes in atmospheric longwave radiation. These insights are used to explain a range of phenomena including observed historical trends, biases in climate model output, and the inter-model spread in climate change projections. These results may help identify biases in future generations of climate models.
We explore the possibility to identify areas of intense patch formation from floating items due to systematic convergence of surface velocity fields by means of a visual comparison of Lagrangian Coherent Structures (LCS) and estimates of areas prone to patch formation using the concept of Finite-Time Compressibility (FTC, a generalisation of the notion of time series of divergence). The LCSs are evaluated using the Finite Time Lyapunov Exponent (FTLE) method. The test area is the Gulf of Finland (GoF) in the Baltic Sea. A basin-wide spatial average of backward FTLE is calculated for the GoF for the first time. This measure of the mixing strength displays a clear seasonal pattern. The evaluated backward FTLE features are linked with potential patch formation regions with high FTC levels. It is shown that areas hosting frequent upwelling or downwelling have consistently stronger than average mixing intensity. The combination of both methods, FTC and LCS, has the potential of being a powerful tool to identify the formation of patches of pollution at the sea surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا