ﻻ يوجد ملخص باللغة العربية
We study one-dimensional algebraic families of pairs given by a polynomial with a marked point. We prove an unlikely intersection statement for such pairs thereby exhibiting strong rigidity features for these pairs. We infer from this result the dynamical Andre-Oort conjecture for curves in the moduli space of polynomials, by describing one-dimensional families in this parameter space containing infinitely many post-critically finite parameters.
We establish the finiteness of periodic points, that we called Geometric Dynamical Northcott Property, for regular polynomials automorphisms of the affine plane over a function field $mathbf{K}$ of characteristic zero, improving results of Ingram.
For every $minmathbb{N}$, we establish the equidistribution of the sequence of the averaged pull-backs of a Dirac measure at any given value in $mathbb{C}setminus{0}$ under the $m$-th order derivatives of the iterates of a polynomials $fin mathbb{C}[
We establish the Geometric Dynamical Northcott Property for polarized endomorphisms of a projective normal variety over a function field $mathbf{K}$ of characteristic zero. This extends previous results of Benedetto, Baker and DeMarco in dimension $1
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic
In this article, we study algebraic dynamical pairs $(f,a)$ parametrized by an irreducible quasi-projective curve $Lambda$ having an absolutely continuous bifurcation measure. We prove that, if $f$ is non-isotrivial and $(f,a)$ is unstable, this is e