ﻻ يوجد ملخص باللغة العربية
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic points for a quadratic polynomial map may be endowed with the structure of a directed graph satisfying certain strict conditions; we call such a graph admissible. Given an admissible graph $G$, we construct a curve $X_1(G)$ whose points parametrize quadratic polynomial maps -- which, up to equivalence, form a one-parameter family -- together with a collection of marked preperiodic points that form a graph isomorphic to $G$. Building on work of Bousch and Morton, we show that these curves are irreducible in characteristic zero, and we give an application of irreducibility in the setting of number fields. We end with a discussion of the Galois theory associated to the preperiodic points of quadratic polynomials, including a certain Galois representation that arises naturally in this setting.
Given a number field $K$ and a polynomial $f(z) in K[z]$ of degree at least 2, one can construct a finite directed graph $G(f,K)$ whose vertices are the $K$-rational preperiodic points for $f$, with an edge $alpha to beta$ if and only if $f(alpha) =
In 1994 S. Bullett and C. Penrose introduced the one complex parameter family of $(2:2)$ holomorphic correspondences $mathcal{F}_a$: $$left(frac{aw-1}{w-1}right)^2+left(frac{aw-1}{w-1}right)left(frac{az+1}{z+1}right) +left(frac{az+1}{z+1}right)^2=3$$
We study one-dimensional algebraic families of pairs given by a polynomial with a marked point. We prove an unlikely intersection statement for such pairs thereby exhibiting strong rigidity features for these pairs. We infer from this result the dyna
In this paper we study the locus of generalized degree $d$ Henon maps in the parameter space $operatorname{Rat}_d^N$ of degree $d$ rational maps $mathbb{P}^Ntomathbb{P}^N$ modulo the conjugation action of $operatorname{SL}_{N+1}$. We show that Henon
We prove that there exists a homeomorphism $chi$ between the connectedness locus $mathcal{M}_{Gamma}$ for the family $mathcal{F}_a$ of $(2:2)$ holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set $mathcal{M}