ترغب بنشر مسار تعليمي؟ اضغط هنا

The Geometric Dynamical Northcott Property For Regular Polynomial Automorphisms of the Affine Plane

239   0   0.0 ( 0 )
 نشر من قبل Gabriel Vigny
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish the finiteness of periodic points, that we called Geometric Dynamical Northcott Property, for regular polynomials automorphisms of the affine plane over a function field $mathbf{K}$ of characteristic zero, improving results of Ingram. For that, we show that when $mathbf{K}$ is the field of rational functions of a smooth complex projective curve, the canonical height of a subvariety is the mass of an appropriate bifurcation current and that a marked point is stable if and only if its canonical height is zero. We then establish the Geometric Dynamical Northcott Property using a similarity argument.



قيم البحث

اقرأ أيضاً

We establish the Geometric Dynamical Northcott Property for polarized endomorphisms of a projective normal variety over a function field $mathbf{K}$ of characteristic zero. This extends previous results of Benedetto, Baker and DeMarco in dimension $1 $, and of Chatzidakis-Hrushovski in higher dimension. Our proof uses complex dynamics arguments and does not rely on the previous one. We first show that when $mathbf{K}$ is the field of rational functions of a smooth complex projective variety, the canonical height of a subvariety is the mass of the appropriate bifurcation current and that a marked point is stable if and only if its canonical height is zero. We then establish the Geometric Dynamical Northcott Property using a similarity argument. Moving from points to subvarieties, we propose, for polarized endomorphisms, a dynamical version of the Geometric Bogomolov Conjecture, recently proved by Cantat, Gao, Habegger and Xie. We establish several cases of this conjecture notably non-isotrivial polynomial skew-product with an isotrivial first coordinate.
We study one-dimensional algebraic families of pairs given by a polynomial with a marked point. We prove an unlikely intersection statement for such pairs thereby exhibiting strong rigidity features for these pairs. We infer from this result the dyna mical Andre-Oort conjecture for curves in the moduli space of polynomials, by describing one-dimensional families in this parameter space containing infinitely many post-critically finite parameters.
For every $minmathbb{N}$, we establish the equidistribution of the sequence of the averaged pull-backs of a Dirac measure at any given value in $mathbb{C}setminus{0}$ under the $m$-th order derivatives of the iterates of a polynomials $fin mathbb{C}[ z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of $f$ with pole at $infty$. We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field $k$ for a sequence of effective divisors on $mathbb{P}^1(overline{k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Henon-type polynomial automorphism of $mathbb{C}^2$ has a given eigenvalue.
238 - John R. Doyle 2017
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic points for a quadratic polynomial map may be endowed with the structure of a directed graph satisfying certain strict conditions; we call such a graph admissible. Given an admissible graph $G$, we construct a curve $X_1(G)$ whose points parametrize quadratic polynomial maps -- which, up to equivalence, form a one-parameter family -- together with a collection of marked preperiodic points that form a graph isomorphic to $G$. Building on work of Bousch and Morton, we show that these curves are irreducible in characteristic zero, and we give an application of irreducibility in the setting of number fields. We end with a discussion of the Galois theory associated to the preperiodic points of quadratic polynomials, including a certain Galois representation that arises naturally in this setting.
186 - Yuri G. Zarhin 2021
In this paper we study principally polarized abelian varieties that admit an automorphism of prime order $p>2$. It turns out that certain natural conditions on the multiplicities of its action on the differentials of the first kind do guarantee that those polarized varieties are not jacobians of curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا