ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-lingual Information Retrieval with BERT

82   0   0.0 ( 0 )
 نشر من قبل Zhuolin Jiang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple neural language models have been developed recently, e.g., BERT and XLNet, and achieved impressive results in various NLP tasks including sentence classification, question answering and document ranking. In this paper, we explore the use of the popular bidirectional language model, BERT, to model and learn the relevance between English queries and foreign-language documents in the task of cross-lingual information retrieval. A deep relevance matching model based on BERT is introduced and trained by finetuning a pretrained multilingual BERT model with weak supervision, using home-made CLIR training data derived from parallel corpora. Experimental results of the retrieval of Lithuanian documents against short English queries show that our model is effective and outperforms the competitive baseline approaches.



قيم البحث

اقرأ أيضاً

77 - Christina Lioma 2017
Building machines that can understand text like humans is an AI-complete problem. A great deal of research has already gone into this, with astounding results, allowing everyday people to discuss with their telephones, or have their reading materials analysed and classified by computers. A prerequisite for processing text semantics, common to the above examples, is having some computational representation of text as an abstract object. Operations on this representation practically correspond to making semantic inferences, and by extension simulating understanding text. The complexity and granularity of semantic processing that can be realised is constrained by the mathematical and computational robustness, expressiveness, and rigour of the tools used. This dissertation contributes a series of such tools, diverse in their mathematical formulation, but common in their application to model semantic inferences when machines process text. These tools are principally expressed in nine distinct models that capture aspects of semantic dependence in highly interpretable and non-complex ways. This dissertation further reflects on present and future problems with the current research paradigm in this area, and makes recommendations on how to overcome them. The amalgamation of the body of work presented in this dissertation advances the complexity and granularity of semantic inferences that can be made automatically by machines.
As a crucial role in cross-language information retrieval (CLIR), query translation has three main challenges: 1) the adequacy of translation; 2) the lack of in-domain parallel training data; and 3) the requisite of low latency. To this end, existing CLIR systems mainly exploit statistical-based machine translation (SMT) rather than the advanced neural machine translation (NMT), limiting the further improvements on both translation and retrieval quality. In this paper, we investigate how to exploit neural query translation model into CLIR system. Specifically, we propose a novel data augmentation method that extracts query translation pairs according to user clickthrough data, thus to alleviate the problem of domain-adaptation in NMT. Then, we introduce an asynchronous strategy which is able to leverage the advantages of the real-time in SMT and the veracity in NMT. Experimental results reveal that the proposed approach yields better retrieval quality than strong baselines and can be well applied into a real-world CLIR system, i.e. Aliexpress e-Commerce search engine. Readers can examine and test their cases on our website: https://aliexpress.com .
Classical information retrieval systems such as BM25 rely on exact lexical match and carry out search efficiently with inverted list index. Recent neural IR models shifts towards soft semantic matching all query document terms, but they lose the comp utation efficiency of exact match systems. This paper presents COIL, a contextualized exact match retrieval architecture that brings semantic lexical matching. COIL scoring is based on overlapping query document tokens contextualized representations. The new architecture stores contextualized token representations in inverted lists, bringing together the efficiency of exact match and the representation power of deep language models. Our experimental results show COIL outperforms classical lexical retrievers and state-of-the-art deep LM retrievers with similar or smaller latency.
We study the problem of deep recall model in industrial web search, which is, given a user query, retrieve hundreds of most relevance documents from billions of candidates. The common framework is to train two encoding models based on neural embeddin g which learn the distributed representations of queries and documents separately and match them in the latent semantic space. However, all the exiting encoding models only leverage the information of the document itself, which is often not sufficient in practice when matching with query terms, especially for the hard tail queries. In this work we aim to leverage the additional information for each document from its co-click neighbour to help document retrieval. The challenges include how to effectively extract information and eliminate noise when involving co-click information in deep model while meet the demands of billion-scale data size for real time online inference. To handle the noise in co-click relations, we firstly propose a web-scale Multi-Intention Co-click document Graph(MICG) which builds the co-click connections between documents on click intention level but not on document level. Then we present an encoding framework MIRA based on Bert and graph attention networks which leverages a two-factor attention mechanism to aggregate neighbours. To meet the online latency requirements, we only involve neighbour information in document side, which can save the time-consuming query neighbor search in real time serving. We conduct extensive offline experiments on both public dataset and private web-scale dataset from two major commercial search engines demonstrating the effectiveness and scalability of the proposed method compared with several baselines. And a further case study reveals that co-click relations mainly help improve web search quality from two aspects: key concept enhancing and query term complementary.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا