ﻻ يوجد ملخص باللغة العربية
Over the past decades, progress in deployable autonomous flight systems has slowly stagnated. This is reflected in todays production air-crafts, where pilots only enable simple physics-based systems such as autopilot for takeoff, landing, navigation, and terrain/traffic avoidance. Evidently, autonomy has not gained the trust of the community where higher problem complexity and cognitive workload are required. To address trust, we must revisit the process for developing autonomous capabilities: modeling and simulation. Given the prohibitive costs for live tests, we need to prototype and evaluate autonomous aerial agents in a high fidelity flight simulator with autonomous learning capabilities applicable to flight systems: such a open-source development platform is not available. As a result, we have developed GymFG: GymFG couples and extends a high fidelity, open-source flight simulator and a robust agent learning framework to facilitate learning of more complex tasks. Furthermore, we have demonstrated the use of GymFG to train an autonomous aerial agent using Imitation Learning. With GymFG, we can now deploy innovative ideas to address complex problems and build the trust necessary to move prototypes to the real-world.
The behavior of self driving cars may differ from people expectations, (e.g. an autopilot may unexpectedly relinquish control). This expectation mismatch can cause potential and existing users to distrust self driving technology and can increase the
Reinforcement learning (RL) has been widely applied to game-playing and surpassed the best human-level performance in many domains, yet there are few use-cases in industrial or commercial settings. We introduce OR-Gym, an open-source library for deve
Recommender Systems are especially challenging for marketplaces since they must maximize user satisfaction while maintaining the healthiness and fairness of such ecosystems. In this context, we observed a lack of resources to design, train, and evalu
We consider shared workspace scenarios with humans and robots acting to achieve independent goals, termed as parallel play. We model these as general-sum games and construct a framework that utilizes the Nash equilibrium solution concept to consider
This paper introduces an adaptive model-free deep reinforcement approach that can recognize and adapt to the diurnal patterns in the ride-sharing environment with car-pooling. Deep Reinforcement Learning (RL) suffers from catastrophic forgetting due