ترغب بنشر مسار تعليمي؟ اضغط هنا

AdaPool: A Diurnal-Adaptive Fleet Management Framework using Model-Free Deep Reinforcement Learning and Change Point Detection

58   0   0.0 ( 0 )
 نشر من قبل Marina Haliem
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces an adaptive model-free deep reinforcement approach that can recognize and adapt to the diurnal patterns in the ride-sharing environment with car-pooling. Deep Reinforcement Learning (RL) suffers from catastrophic forgetting due to being agnostic to the timescale of changes in the distribution of experiences. Although RL algorithms are guaranteed to converge to optimal policies in Markov decision processes (MDPs), this only holds in the presence of static environments. However, this assumption is very restrictive. In many real-world problems like ride-sharing, traffic control, etc., we are dealing with highly dynamic environments, where RL methods yield only sub-optimal decisions. To mitigate this problem in highly dynamic environments, we (1) adopt an online Dirichlet change point detection (ODCP) algorithm to detect the changes in the distribution of experiences, (2) develop a Deep Q Network (DQN) agent that is capable of recognizing diurnal patterns and making informed dispatching decisions according to the changes in the underlying environment. Rather than fixing patterns by time of week, the proposed approach automatically detects that the MDP has changed, and uses the results of the new model. In addition to the adaptation logic in dispatching, this paper also proposes a dynamic, demand-aware vehicle-passenger matching and route planning framework that dynamically generates optimal routes for each vehicle based on online demand, vehicle capacities, and locations. Evaluation on New York City Taxi public dataset shows the effectiveness of our approach in improving the fleet utilization, where less than 50% of the fleet are utilized to serve the demand of up to 90% of the requests, while maximizing profits and minimizing idle times.



قيم البحث

اقرأ أيضاً

With the freight delivery demands and shipping costs increasing rapidly, intelligent control of fleets to enable efficient and cost-conscious solutions becomes an important problem. In this paper, we propose DeepFreight, a model-free deep-reinforceme nt-learning-based algorithm for multi-transfer freight delivery, which includes two closely-collaborative components: truck-dispatch and package-matching. Specifically, a deep multi-agent reinforcement learning framework called QMIX is leveraged to learn a dispatch policy, with which we can obtain the multi-step joint dispatch decisions for the fleet with respect to the delivery requests. Then an efficient multi-transfer matching algorithm is executed to assign the delivery requests to the trucks. Also, DeepFreight is integrated with a Mixed-Integer Linear Programming optimizer for further optimization. The evaluation results show that the proposed system is highly scalable and ensures a 100% delivery success while maintaining low delivery time and fuel consumption.
353 - Shaoyang Wang , Tiejun Lv , Wei Ni 2021
This paper presents a novel and effective deep reinforcement learning (DRL)-based approach to addressing joint resource management (JRM) in a practical multi-carrier non-orthogonal multiple access (MC-NOMA) system, where hardware sensitivity and impe rfect successive interference cancellation (SIC) are considered. We first formulate the JRM problem to maximize the weighted-sum system throughput. Then, the JRM problem is decoupled into two iterative subtasks: subcarrier assignment (SA, including user grouping) and power allocation (PA). Each subtask is a sequential decision process. Invoking a deep deterministic policy gradient algorithm, our proposed DRL-based JRM (DRL-JRM) approach jointly performs the two subtasks, where the optimization objective and constraints of the subtasks are addressed by a new joint reward and internal reward mechanism. A multi-agent structure and a convolutional neural network are adopted to reduce the complexity of the PA subtask. We also tailor the neural network structure for the stability and convergence of DRL-JRM. Corroborated by extensive experiments, the proposed DRL-JRM scheme is superior to existing alternatives in terms of system throughput and resistance to interference, especially in the presence of many users and strong inter-cell interference. DRL-JRM can flexibly meet individual service requirements of users.
The incorporation of macro-actions (temporally extended actions) into multi-agent decision problems has the potential to address the curse of dimensionality associated with such decision problems. Since macro-actions last for stochastic durations, mu ltiple agents executing decentralized policies in cooperative environments must act asynchronously. We present an algorithm that modifies generalized advantage estimation for temporally extended actions, allowing a state-of-the-art policy optimization algorithm to optimize policies in Dec-POMDPs in which agents act asynchronously. We show that our algorithm is capable of learning optimal policies in two cooperative domains, one involving real-time bus holding control and one involving wildfire fighting with unmanned aircraft. Our algorithm works by framing problems as event-driven decision processes, which are scenarios in which the sequence and timing of actions and events are random and governed by an underlying stochastic process. In addition to optimizing policies with continuous state and action spaces, our algorithm also facilitates the use of event-driven simulators, which do not require time to be discretized into time-steps. We demonstrate the benefit of using event-driven simulation in the context of multiple agents taking asynchronous actions. We show that fixed time-step simulation risks obfuscating the sequence in which closely separated events occur, adversely affecting the policies learned. In addition, we show that arbitrarily shrinking the time-step scales poorly with the number of agents.
The growth in online goods delivery is causing a dramatic surge in urban vehicle traffic from last-mile deliveries. On the other hand, ride-sharing has been on the rise with the success of ride-sharing platforms and increased research on using autono mous vehicle technologies for routing and matching. The future of urban mobility for passengers and goods relies on leveraging new methods that minimize operational costs and environmental footprints of transportation systems. This paper considers combining passenger transportation with goods delivery to improve vehicle-based transportation. Even though the problem has been studied with a defined dynamics model of the transportation system environment, this paper considers a model-free approach that has been demonstrated to be adaptable to new or erratic environment dynamics. We propose FlexPool, a distributed model-free deep reinforcement learning algorithm that jointly serves passengers & goods workloads by learning optimal dispatch policies from its interaction with the environment. The proposed algorithm pools passengers for a ride-sharing service and delivers goods using a multi-hop transit method. These flexibilities decrease the fleets operational cost and environmental footprint while maintaining service levels for passengers and goods. Through simulations on a realistic multi-agent urban mobility platform, we demonstrate that FlexPool outperforms other model-free settings in serving the demands from passengers & goods. FlexPool achieves 30% higher fleet utilization and 35% higher fuel efficiency in comparison to (i) model-free approaches where vehicles transport a combination of passengers & goods without the use of multi-hop transit, and (ii) model-free approaches where vehicles exclusively transport either passengers or goods.
Air traffic control is becoming a more and more complex task due to the increasing number of aircraft. Current air traffic control methods are not suitable for managing this increased traffic. Autonomous air traffic control is deemed a promising alte rnative. In this paper an air traffic control model is presented that guides an arbitrary number of aircraft across a three-dimensional, unstructured airspace while avoiding conflicts and collisions. This is done utilizing the power of graph based deep learning approaches. These approaches offer significant advantages over current approaches to this task, such as invariance to the input ordering of aircraft and the ability to easily cope with a varying number of aircraft. Results acquired using these approaches show that the air traffic control model performs well on realistic traffic densities; it is capable of managing the airspace by avoiding 100% of potential collisions and preventing 89.8% of potential conflicts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا