ﻻ يوجد ملخص باللغة العربية
The ability to perform in-hand manipulation still remains an unsolved problem; having this capability would allow robots to perform sophisticated tasks requiring repositioning and reorienting of grasped objects. In this work, we present a novel non-anthropomorphic robot grasper with the ability to manipulate objects by means of active surfaces at the fingertips. Active surfaces are achieved by spherical rolling fingertips with two degrees of freedom (DoF) -- a pivoting motion for surface reorientation -- and a continuous rolling motion for moving the object. A further DoF is in the base of each finger, allowing the fingers to grasp objects over a range of size and shapes. Instantaneous kinematics was derived and objects were successfully manipulated both with a custom handcrafted control scheme as well as one learned through imitation learning, in simulation and experimentally on the hardware.
Despite decades of research, general purpose in-hand manipulation remains one of the unsolved challenges of robotics. One of the contributing factors that limit current robotic manipulation systems is the difficulty of precisely sensing contact force
Many robotics domains use some form of nonconvex model predictive control (MPC) for planning, which sets a reduced time horizon, performs trajectory optimization, and replans at every step. The actual task typically requires a much longer horizon tha
The purpose of this benchmark is to evaluate the planning and control aspects of robotic in-hand manipulation systems. The goal is to assess the systems ability to change the pose of a hand-held object by either using the fingers, environment or a co
Most current anthropomorphic robotic hands can realize part of the human hand functions, particularly for object grasping. However, due to the complexity of the human hand, few current designs target at daily object manipulations, even for simple act
This paper evaluates state-of-the-art contact models at predicting the motions and forces involved in simple in-hand robotic manipulations. In particular it focuses on three primitive actions --linear sliding, pivoting, and rolling-- that involve con