ترغب بنشر مسار تعليمي؟ اضغط هنا

DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to In-Hand Manipulation

185   0   0.0 ( 0 )
 نشر من قبل Roberto Calandra
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite decades of research, general purpose in-hand manipulation remains one of the unsolved challenges of robotics. One of the contributing factors that limit current robotic manipulation systems is the difficulty of precisely sensing contact forces -- sensing and reasoning about contact forces are crucial to accurately control interactions with the environment. As a step towards enabling better robotic manipulation, we introduce DIGIT, an inexpensive, compact, and high-resolution tactile sensor geared towards in-hand manipulation. DIGIT improves upon past vision-based tactile sensors by miniaturizing the form factor to be mountable on multi-fingered hands, and by providing several design improvements that result in an easier, more repeatable manufacturing process, and enhanced reliability. We demonstrate the capabilities of the DIGIT sensor by training deep neural network model-based controllers to manipulate glass marbles in-hand with a multi-finger robotic hand. To provide the robotic community access to reliable and low-cost tactile sensors, we open-source the DIGIT design at https://digit.ml/.



قيم البحث

اقرأ أيضاً

The ability to perform in-hand manipulation still remains an unsolved problem; having this capability would allow robots to perform sophisticated tasks requiring repositioning and reorienting of grasped objects. In this work, we present a novel non-a nthropomorphic robot grasper with the ability to manipulate objects by means of active surfaces at the fingertips. Active surfaces are achieved by spherical rolling fingertips with two degrees of freedom (DoF) -- a pivoting motion for surface reorientation -- and a continuous rolling motion for moving the object. A further DoF is in the base of each finger, allowing the fingers to grasp objects over a range of size and shapes. Instantaneous kinematics was derived and objects were successfully manipulated both with a custom handcrafted control scheme as well as one learned through imitation learning, in simulation and experimentally on the hardware.
Many robotics domains use some form of nonconvex model predictive control (MPC) for planning, which sets a reduced time horizon, performs trajectory optimization, and replans at every step. The actual task typically requires a much longer horizon tha n is computationally tractable, and is specified via a cost function that cumulates over that full horizon. For instance, an autonomous car may have a cost function that makes a desired trade-off between efficiency, safety, and obeying traffic laws. In this work, we challenge the common assumption that the cost we optimize using MPC should be the same as the ground truth cost for the task (plus a terminal cost). MPC solvers can suffer from short planning horizons, local optima, incorrect dynamics models, and, importantly, fail to account for future replanning ability. Thus, we propose that in many tasks it could be beneficial to purposefully choose a different cost function for MPC to optimize: one that results in the MPC rollout having low ground truth cost, rather than the MPC planned trajectory. We formalize this as an optimal cost design problem, and propose a zeroth-order optimization-based approach that enables us to design optimal costs for an MPC planning robot in continuous MDPs. We test our approach in an autonomous driving domain where we find costs different from the ground truth that implicitly compensate for replanning, short horizon, incorrect dynamics models, and local minima issues. As an example, the learned cost incentivizes MPC to delay its decision until later, implicitly accounting for the fact that it will get more information in the future and be able to make a better decision. Code and videos available at https://sites.google.com/berkeley.edu/ocd-mpc/.
Tactile sensing is essential to the human perception system, so as to robot. In this paper, we develop a novel optical-based tactile sensor FingerVision with effective signal processing algorithms. This sensor is composed of soft skin with embedded m arker array bonded to rigid frame, and a web camera with a fisheye lens. While being excited with contact force, the camera tracks the movements of markers and deformation field is obtained. Compared to existing tactile sensors, our sensor features compact footprint, high resolution, and ease of fabrication. Besides, utilizing the deformation field estimation, we propose a slip classification framework based on convolution Long Short Term Memory (convolutional LSTM) networks. The data collection process takes advantage of the human sense of slip, during which human hand holds 12 daily objects, interacts with sensor skin and labels data with a slip or non-slip identity based on human feeling of slip. Our slip classification framework performs high accuracy of 97.62% on the test dataset. It is expected to be capable of enhancing the stability of robot grasping significantly, leading to better contact force control, finer object interaction and more active sensing manipulation.
This work presents a new version of the tactile-sensing finger GelSlim 3.0, which integrates the ability to sense high-resolution shape, force, and slip in a compact form factor for use with small parallel jaw grippers in cluttered bin-picking scenar ios. The novel design incorporates the capability to use real-time analytic methods to measure shape, estimate the contact 3D force distribution, and detect incipient slip. To achieve a compact integration, we optimize the optical path from illumination source to camera and other geometric variables in a optical simulation environment. In particular, we optimize the illumination sources and a light shaping lens around the constraints imposed by the photometric stereo algorithm used for depth reconstruction. The optimized optical configuration is integrated into a finger design composed of robust and easily replaceable snap-to-fit fingetip module that allow for ease of manufacture, assembly, use, and repair. To stimulate future research in tactile-sensing and provide the robotics community access to reliable and easily-reproducible tactile finger with a diversity of sensing modalities, we open-source the design and software at https://github.com/mcubelab/gelslim.
Soft robotic hands and grippers are increasingly attracting attention as a robotic end-effector. Compared with rigid counterparts, they are safer for human-robot and environment-robot interactions, easier to control, lower cost and weight, and more c ompliant. Current soft robotic hands have mostly focused on the soft fingers and bending actuators. However, the palm is also essential part for grasping. In this work, we propose a novel design of soft humanoid hand with pneumatic soft fingers and soft palm. The hand is inexpensive to fabricate. The configuration of the soft palm is based on modular design which can be easily applied into actuating all kinds of soft fingers before. The splaying of the fingers, bending of the whole palm, abduction and adduction of the thumb are implemented by the soft palm. Moreover, we present a new design of soft finger, called hybrid bending soft finger (HBSF). It can both bend in the grasping axis and deflect in the side-to-side axis as human-like motion. The functions of the HBSF and soft palm were simulated by SOFA framework. And their performance was tested in experiments. The 6 fingers with 1 to 11 segments were tested and analyzed. The versatility of the soft hand is evaluated and testified by the grasping experiments in real scenario according to Feix taxonomy. And the results present the diversity of grasps and show promise for grasping a variety of objects with different shapes and weights.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا