ﻻ يوجد ملخص باللغة العربية
For a collisionless plasma in contact with a dielectric surface, where with unit probability electrons and ions are, respectively, absorbed and neutralized, thereby injecting electrons and holes into the conduction and valence band, we study the kinetics of plasma loss by nonradiative electron-hole recombination inside the dielectric. We obtain a self-consistently embedded electric double layer, merging with the quasi-neutral, field-free regions inside the plasma and the solid. After a description of the numerical scheme for solving the two sets of Boltzmann equations, one for the electrons and ions of the plasma and one for the electrons and holes of the solid, to which this transport problem gives rise to, we present numerical results for a p-doped dielectric. Besides potential, density, and flux profiles, plasma-induced changes in the electron and hole distribution functions are discussed, from which a microscopic view on plasma loss inside the dielectric emerges.
Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between diel
Plasma shock waves widely exist and play an important role in high-energy-density environment, especially in the inertial confinement fusion. Due to the large gradient of macroscopic physical quantities and the coupled thermal, electrical, magnetic a
The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the objects negative charge arising from the accumula
Density waves were studied in a phase-separated binary complex plasma under microgravity conditions. For the big particles, waves were self-excited by the two-stream instability, while for small particles, they were excited by heartbeat instability w
The most fundamental response of a solid to a plasma and vice versa is electric. An electric double layer forms with a solid-bound electron-rich region-the wall charge-and a plasma-bound electron-depleted region-the plasma sheath. But it is only the