ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete Boltzmann Modeling of Plasma Shock Wave

114   0   0.0 ( 0 )
 نشر من قبل Aiguo Xu Prof. Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasma shock waves widely exist and play an important role in high-energy-density environment, especially in the inertial confinement fusion. Due to the large gradient of macroscopic physical quantities and the coupled thermal, electrical, magnetic and optical phenomena, there exist not only hydrodynamic non-equilibrium (HNE) effects, but also strong thermodynamic non-equilibrium (TNE) effects around the wavefront. In this work, a two-dimensional single-fluid discrete Boltzmann model is proposed to investigate the physical structure of ion shock. The electron is assumed inertialess and always in thermodynamic equilibrium. The Rankine-Hugoniot relations for single fluid theory of plasma shock wave is derived. It is found that the physical structure of shock wave in plasma is significantly different from that in normal fluid and somewhat similar to that of detonation wave from the sense that a peak appears in the front. The non-equilibrium effects around the shock front become stronger with increasing Mach number. The charge of electricity deviates oppositely from neutrality in upstream and downstream of the shock wave. The large inertia of the ions causes them to lag behind, so the wave front charge is negative and the wave rear charge is positive. The variations of HNE and TNE with Mach number are numerically investigated. The characteristics of TNE can be used to distinguish plasma shock wave from detonation wave.



قيم البحث

اقرأ أيضاً

85 - K. Rasek , F. X. Bronold , 2020
For a collisionless plasma in contact with a dielectric surface, where with unit probability electrons and ions are, respectively, absorbed and neutralized, thereby injecting electrons and holes into the conduction and valence band, we study the kine tics of plasma loss by nonradiative electron-hole recombination inside the dielectric. We obtain a self-consistently embedded electric double layer, merging with the quasi-neutral, field-free regions inside the plasma and the solid. After a description of the numerical scheme for solving the two sets of Boltzmann equations, one for the electrons and ions of the plasma and one for the electrons and holes of the solid, to which this transport problem gives rise to, we present numerical results for a p-doped dielectric. Besides potential, density, and flux profiles, plasma-induced changes in the electron and hole distribution functions are discussed, from which a microscopic view on plasma loss inside the dielectric emerges.
The phenomenon of Bose-Einstein condensation is traditionally associated with and experimentally verified for low temperatures: either of nano-Kelvin scale for alkali atoms [1-3] or room temperatures for quasi-particles [4,5] or photons in two dimens ions [6]. Here we demonstrate out of first principles that for certain initial conditions non-equilibrium plasma at relativistic temperatures of billions of Kelvin undergoes condensation, predicted by Zeldovich and Levich in their seminal work [7]. We determine the necessary conditions for the onset of condensation and discuss the possibilities to observe such a phenomenon in laboratory and astrophysical conditions.
307 - Philip B. Allen 2021
This note has few new results except, at the end, a redefinition of the `thermal distributor. The main purpose of this note is to clarify the solution of the non-local Peierls Boltzmann equation found by Hua and Lindsay (Phys. Rev. B 102, 104310 (202 0)). The new, non-Fourier term (B) (in J=-kappa grad T + B) that occurs in non-local situations, gives rise also to a new term in the thermal distributor.
102 - Yingchao Lu , Shengtai Li , Hui Li 2019
Three-dimensional FLASH radiation-magnetohydrodynamics (radiation-MHD) modeling is carried out to study the hydrodynamics and magnetic fields in the shock-shear derived platform. Simulations indicate that fields of tens of Tesla can be generated via Biermann battery effect due to vortices and mix in the counter-propagating shock-induced shear layer. Synthetic proton radiography simulations using MPRAD and synthetic X-ray image simulations using SPECT3D are carried out to predict the observable features in the diagnostics. Quantifying the effects of magnetic fields in inertial confinement fusion (ICF) and high-energy-density (HED) plasmas represents frontier research that has far-reaching implications in basic and applied sciences.
Numerical simulation of plasma turbulence in the Large Plasma Device (LAPD) [Gekelman et al, Rev. Sci. Inst., 62, 2875, 1991] is presented. The model, implemented in the BOUndary Turbulence (BOUT) code [M. Umansky et al, Contrib. Plasma Phys. 180, 88 7 (2009)], includes 3-D collisional fluid equations for plasma density, electron parallel momentum, and current continuity, and also includes the effects of ion-neutral collisions. In nonlinear simulations using measured LAPD density profiles but assuming constant temperature profile for simplicity, self-consistent evolution of instabilities and nonlinearly-generated zonal flows results in a saturated turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good qualitative and reasonable quantitative agreement, in particular in frequency spectrum, spatial correlation and amplitude probability distribution function of density fluctuations. For comparison with LAPD measurements, the plasma density profile in simulations is maintained either by direct azimuthal averaging on each time step, or by adding particle source/sink function. The inferred source/sink values are consistent with the estimated ionization source and parallel losses in LAPD. These simulations lay the groundwork for more a comprehensive effort to test fluid turbulence simulation against LAPD data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا