ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron microphysics at plasma-solid interfaces

159   0   0.0 ( 0 )
 نشر من قبل Franz X. Bronold
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The most fundamental response of a solid to a plasma and vice versa is electric. An electric double layer forms with a solid-bound electron-rich region-the wall charge-and a plasma-bound electron-depleted region-the plasma sheath. But it is only the plasma sheath which has been studied extensively ever since the beginning of plasma physics. The wall charge received much less attention. Especially little is known about the in-operando electronic structure of plasma-facing solids and how it affects the spatio-temporal scales of the wall charge. The purpose of this perspective is to encourage investigations of this terra incognito by techniques of modern surface physics. Using our own theoretical explorations of the electron microphysics at plasma-solid interfaces and a proposal for measuring the wall charge by infrared reflectivity to couch the discussion, we hope to put together enough convincing reasons for getting such efforts started. They would open up-at the intersection of plasma and surface physics-a new arena for applied as well as fundamental research.



قيم البحث

اقرأ أيضاً

The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the objects negative charge arising from the accumula tion of electrons from the plasma. The plasma sheath is thus the positively charged part of an electric double layer whose negatively charged part is inside the wall. In the course of the Transregional Collaborative Research Center SFB/TRR24 we investigated, from a microscopic point of view, the elementary charge transfer processes responsible for the electric double layer at a floating plasma-wall interface and made first steps towards a description of the negative part of the layer inside the wall. Below we review our work in a colloquial manner, describe possible extensions, and identify key issues which need to be resolved to make further progress in the understanding of the electron kinetics across plasma-wall interfaces.
282 - R. Jorge , P. Ricci , S. Brunner 2018
The dynamics of electron-plasma waves are described at arbitrary collisionality by considering the full Coulomb collision operator. The description is based on a Hermite-Laguerre decomposition of the velocity dependence of the electron distribution f unction. The damping rate, frequency, and eigenmode spectrum of electron-plasma waves are found as functions of the collision frequency and wavelength. A comparison is made between the collisionless Landau damping limit, the Lenard-Bernstein and Dougherty collision operators, and the electron-ion collision operator, finding large deviations in the damping rates and eigenmode spectra. A purely damped entropy mode, characteristic of a plasma where pitch-angle scattering effects are dominant with respect to collisionless effects, is shown to emerge numerically, and its dispersion relation is analytically derived. It is shown that such a mode is absent when simplified collision operators are used, and that like-particle collisions strongly influence the damping rate of the entropy mode.
85 - K. Rasek , F. X. Bronold , 2020
For a collisionless plasma in contact with a dielectric surface, where with unit probability electrons and ions are, respectively, absorbed and neutralized, thereby injecting electrons and holes into the conduction and valence band, we study the kine tics of plasma loss by nonradiative electron-hole recombination inside the dielectric. We obtain a self-consistently embedded electric double layer, merging with the quasi-neutral, field-free regions inside the plasma and the solid. After a description of the numerical scheme for solving the two sets of Boltzmann equations, one for the electrons and ions of the plasma and one for the electrons and holes of the solid, to which this transport problem gives rise to, we present numerical results for a p-doped dielectric. Besides potential, density, and flux profiles, plasma-induced changes in the electron and hole distribution functions are discussed, from which a microscopic view on plasma loss inside the dielectric emerges.
Electrical double layers play a key role in a variety of electrochemical systems. The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them suitable for probing of ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent electrode in a two-electrode electrochemical system, we show that the secondary electron yield of the graphene-liquid interface depends on the ionic strength and concentration of electrolyte and applied bias at the remote counter electrode. These observations have been related to polarization-induced changes in the potential distribution within the electrical double layer and demonstrate the feasibility of using scanning electron microscopy to examine and map electrified liquid-solid interfaces
The radiation pressure of next generation ultra-high intensity ($>10^{23}$ W/cm$^{2}$) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these lase r pulses with matter. Here we show that these effects may lead to the production of an extremely dense ($sim10^{24}$ cm$^{-3}$) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and energy conversion efficiency by up to 30-50% & 50-65%, respectively. Thus we identify the regimes of laser-matter interaction where either ions are efficiently accelerated or dense pair-plasmas are produced as a guide for future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا