ﻻ يوجد ملخص باللغة العربية
Purpose: To develop a machine learning model to classify the severity grades of pulmonary edema on chest radiographs. Materials and Methods: In this retrospective study, 369,071 chest radiographs and associated radiology reports from 64,581 (mean age, 51.71; 54.51% women) patients from the MIMIC-CXR chest radiograph dataset were included. This dataset was split into patients with and without congestive heart failure (CHF). Pulmonary edema severity labels from the associated radiology reports were extracted from patients with CHF as four different ordinal levels: 0, no edema; 1, vascular congestion; 2, interstitial edema; and 3, alveolar edema. Deep learning models were developed using two approaches: a semi-supervised model using a variational autoencoder and a pre-trained supervised learning model using a dense neural network. Receiver operating characteristic curve analysis was performed on both models. Results: The area under the receiver operating characteristic curve (AUC) for differentiating alveolar edema from no edema was 0.99 for the semi-supervised model and 0.87 for the pre-trained models. Performance of the algorithm was inversely related to the difficulty in categorizing milder states of pulmonary edema (shown as AUCs for semi-supervised model and pre-trained model, respectively): 2 versus 0, 0.88 and 0.81; 1 versus 0, 0.79 and 0.66; 3 versus 1, 0.93 and 0.82; 2 versus 1, 0.69 and 0.73; and, 3 versus 2, 0.88 and 0.63. Conclusion: Deep learning models were trained on a large chest radiograph dataset and could grade the severity of pulmonary edema on chest radiographs with high performance.
We propose and demonstrate a novel machine learning algorithm that assesses pulmonary edema severity from chest radiographs. While large publicly available datasets of chest radiographs and free-text radiology reports exist, only limited numerical ed
Chest radiograph (CXR) interpretation in pediatric patients is error-prone and requires a high level of understanding of radiologic expertise. Recently, deep convolutional neural networks (D-CNNs) have shown remarkable performance in interpreting CXR
Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligen
Dual-energy (DE) chest radiography provides the capability of selectively imaging two clinically relevant materials, namely soft tissues, and osseous structures, to better characterize a wide variety of thoracic pathology and potentially improve diag
Deep learning has demonstrated radiograph screening performances that are comparable or superior to radiologists. However, recent studies show that deep models for thoracic disease classification usually show degraded performance when applied to exte