ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid real- and reciprocal-space full-field imaging with coherent illumination

244   0   0.0 ( 0 )
 نشر من قبل Po-Nan Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel diffractive imaging method that harnesses a low-resolution real-space image to guide the phase retrieval. A computational algorithm is developed to utilize such prior knowledge as a real-space constraint in the iterative phase retrieval procedure. Numerical simulations and proof-of-concept experiments are carried out, demonstrating our methods capability of reconstructing high-resolution details that are otherwise inaccessible with traditional phasing algorithms. With the present method, we formulate a conceptual design for the coherent imaging experiments at a next-generation X-ray light source.

قيم البحث

اقرأ أيضاً

The performance of light-field microscopy is improved by selectively illuminating the relevant subvolume of the specimen with a second objective lens [1-3]. Here we advance this approach to a single-objective geometry, using an oblique one-photon ill umination path or two-photon illumination to accomplish selective-volume excitation. The elimination of the second orthogonally oriented objective to selectively excite the volume of interest simplifies specimen mounting; yet, this single-objective approach still reduces out-of-volume background, resulting in improvements in image contrast, effective resolution, and volume reconstruction quality. We validate our new approach through imaging live developing zebrafish, demonstrating the technologys ability to capture imaging data from large volumes synchronously with high contrast, while remaining compatible with standard microscope sample mounting.
Under weak illumination, tracking and imaging moving object turns out to be hard. By spatially collecting the signal, single pixel imaging schemes promise the capability of image reconstruction from low photon flux. However, due to the requirement on large number of samplings, how to clearly image moving objects is an essential problem for such schemes. Here we present a principle of single pixel tracking and imaging method. Velocity vector of the object is obtained from temporal correlation of the bucket signals in a typical computational ghost imaging system. Then the illumination beam is steered accordingly. Taking the velocity into account, both trajectory and clear image of the object are achieved during its evolution. Since tracking is achieved with bucket signals independently, this scheme is valid for capturing moving object as fast as its displacement within the interval of every sampling keeps larger than the resolution of the optical system. Experimentally, our method works well with the average number of detected photons down to 1.88 photons/speckle.
On-invasive optical imaging techniques are essential diagnostic tools in many fields. Although various recent methods have been proposed to utilize and control light in multiple scattering media, non-invasive optical imaging through and inside scatte ring layers across a large field of view remains elusive due to the physical limits set by the optical memory effect, especially without wavefront shaping techniques. Here, we demonstrate an approach that enables non-invasive fluorescence imaging behind scattering layers with field-of-views extending well beyond the optical memory effect. The method consists in demixing the speckle patterns emitted by a fluorescent object under variable unknown random illumination, using matrix factorization and a novel fingerprint-based reconstruction. Experimental validation shows the efficiency and robustness of the method with various fluorescent samples, covering a field of view up to three times the optical memory effect range. Our non-invasive imaging technique is simple, neither requires a spatial light modulator nor a guide star, and can be generalized to a wide range of incoherent contrast mechanisms and illumination schemes.
By encoding the high-dimensional light-field imaging information into a detectable two-dimensional speckle plane, ghost imaging camera via sparsity constraints (GISC camera) can directly catch the high-dimensional light-field imaging information with only one snapshot. This makes it worth to revisit the spatial resolution limit of this optical imaging system. In this paper we show both theoretically and experimentally that, while the resolution in high-dimensional light-field space is still limited by diffraction, the statistical spatial resolution of GISC camera can be greatly improved comparing to classical Rayleighs criterion by utilizing the discernibility in high-dimensional light-field space. The interaction between imaging resolution, degrees of freedom of light field, and degrees of freedom of objects in high-dimensional light-field space is also demonstrated.
We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. Thi s SPI scheme uses a digital micromirror device to modulate a sequence of laser pulses with preset delays to achieve three-color structured illumination, then employs a photomultiplier tube into the TCSPC module to achieve photon-counting detection. By exploiting the time-resolved capabilities of TCSPC, we demodulate the spectrum-image-encoded signals, and then reconstruct high-quality full-color images in a single-round of measurement. Based on this scheme, the strategies such as single-step measurement, high-speed projection, and undersampling can further improve the imaging efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا