ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-pixel Tracking and Imaging under Weak Illumination

183   0   0.0 ( 0 )
 نشر من قبل Shuai Sun
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Under weak illumination, tracking and imaging moving object turns out to be hard. By spatially collecting the signal, single pixel imaging schemes promise the capability of image reconstruction from low photon flux. However, due to the requirement on large number of samplings, how to clearly image moving objects is an essential problem for such schemes. Here we present a principle of single pixel tracking and imaging method. Velocity vector of the object is obtained from temporal correlation of the bucket signals in a typical computational ghost imaging system. Then the illumination beam is steered accordingly. Taking the velocity into account, both trajectory and clear image of the object are achieved during its evolution. Since tracking is achieved with bucket signals independently, this scheme is valid for capturing moving object as fast as its displacement within the interval of every sampling keeps larger than the resolution of the optical system. Experimentally, our method works well with the average number of detected photons down to 1.88 photons/speckle.

قيم البحث

اقرأ أيضاً

We demonstrate single-pixel imaging in the spectral domain by encoding Fourier probe patterns onto the spectrum of a superluminescent laser diode using a programmable optical filter. As a proof-of-concept, we measure the wavelength-dependent transmis sion of a Michelson interferometer and a wavelength-division multiplexer. Our results open new perspectives for remote broadband measurements with possible applications in industrial, biological or security applications.
We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. Thi s SPI scheme uses a digital micromirror device to modulate a sequence of laser pulses with preset delays to achieve three-color structured illumination, then employs a photomultiplier tube into the TCSPC module to achieve photon-counting detection. By exploiting the time-resolved capabilities of TCSPC, we demodulate the spectrum-image-encoded signals, and then reconstruct high-quality full-color images in a single-round of measurement. Based on this scheme, the strategies such as single-step measurement, high-speed projection, and undersampling can further improve the imaging efficiency.
The performance of light-field microscopy is improved by selectively illuminating the relevant subvolume of the specimen with a second objective lens [1-3]. Here we advance this approach to a single-objective geometry, using an oblique one-photon ill umination path or two-photon illumination to accomplish selective-volume excitation. The elimination of the second orthogonally oriented objective to selectively excite the volume of interest simplifies specimen mounting; yet, this single-objective approach still reduces out-of-volume background, resulting in improvements in image contrast, effective resolution, and volume reconstruction quality. We validate our new approach through imaging live developing zebrafish, demonstrating the technologys ability to capture imaging data from large volumes synchronously with high contrast, while remaining compatible with standard microscope sample mounting.
Single-pixel imaging is suitable for low light level scenarios because a bucket detector is employed to maximally collect the light from an object. However, one of the challenges is its slow imaging speed, mainly due to the slow light modulation tech nique. We here demonstrate 1.4MHz video imaging based on computational ghost imaging with a RGB LED array having a full-range frame rate up to 100MHz. With this method, the motion of a high speed propeller is observed. Moreover, by exploiting single-photon detectors to increase the detection efficiency, this method is developed for ultra-high-speed imaging under low light level.
Optical diffraction tomography is an indispensable tool for studying objects in three-dimensions due to its ability to accurately reconstruct scattering objects. Until now this technique has been limited to coherent light because spatial phase inform ation is required to solve the inverse scattering problem. We introduce a method that extends optical diffraction tomography to imaging spatially incoherent contrast mechanisms such as fluorescent emission. Our strategy mimics the coherent scattering process with two spatially coherent illumination beams. The interferometric illumination pattern encodes spatial phase in temporal variations of the fluorescent emission, thereby allowing incoherent fluorescent emission to mimic the behavior of coherent illumination. The temporal variations permit recovery of the propagation phase, and thus the spatial distribution of incoherent fluorescent emission can be recovered with an inverse scattering model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا