ﻻ يوجد ملخص باللغة العربية
Basis Light-front Quantization (BLFQ) is a nonperturbative approach to quantum field theory. In this paper, we report our recent progress in applying BLFQ to the positronium system in QED and to the meson and the baryon system in QCD. We present preliminary results on the mass spectrum, light-front wave functions and other observables of these systems, where one dynamical gauge boson is retained for the positronium and meson systems.
Basis Light-front Quantization has been developed as a first-principles nonperturbative approach to quantum field theory. In this article we report our recent progress on the applications to the single electron and the positronium system in QED. We f
We study the light-unflavored mesons as relativistic bound states in the nonperturbative Hamiltonian formalism of the basis light-front quantization (BLFQ) approach. The dynamics for the valence quarks of these mesons is specified by an effective Ham
Hamiltonian light-front quantum field theory constitutes a framework for the non-perturbative solution of invariant masses and correlated parton amplitudes of self-bound systems. By choosing light-front gauge and adopting a basis function representat
Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes
We apply the basis light-front quantization framework to solve for the structures of mesons with light and strange valence quarks. Our approach treats mesons as relativistic bound states with quarks confined in both the transverse direction and the l