ﻻ يوجد ملخص باللغة العربية
We study the light-unflavored mesons as relativistic bound states in the nonperturbative Hamiltonian formalism of the basis light-front quantization (BLFQ) approach. The dynamics for the valence quarks of these mesons is specified by an effective Hamiltonian containing the one-gluon exchange interaction and the confining potentials both introduced in our previous work on heavy quarkonia, supplemented additionally by a pseudoscalar contact interaction. We diagonalize this Hamiltonian in our basis function representation to obtain the mass spectrum and the light-front wave functions (LFWFs). Based on these LFWFs, we then study the structure of these mesons by computing the electromagnetic form factors, the decay constants, the parton distribution amplitudes (PDAs), and the parton distribution functions (PDFs). Our results are comparable to those from experiments and other theoretical models.
We apply the basis light-front quantization framework to solve for the structures of mesons with light and strange valence quarks. Our approach treats mesons as relativistic bound states with quarks confined in both the transverse direction and the l
Basis Light-front Quantization has been developed as a first-principles nonperturbative approach to quantum field theory. In this article we report our recent progress on the applications to the single electron and the positronium system in QED. We f
Basis Light-front Quantization (BLFQ) is a nonperturbative approach to quantum field theory. In this paper, we report our recent progress in applying BLFQ to the positronium system in QED and to the meson and the baryon system in QCD. We present prel
We survey recent progress in calculating properties of the electron and hadrons within the Basis Light Front Quantization (BLFQ) approach. We include applications to electromagnetic and strong scattering processes in relativistic heavy ion collisions
Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes