ﻻ يوجد ملخص باللغة العربية
We apply the basis light-front quantization framework to solve for the structures of mesons with light and strange valence quarks. Our approach treats mesons as relativistic bound states with quarks confined in both the transverse direction and the light-front longitudinal direction. The spin-orbit interactions of these confined quarks are further specified by the Nambu--Jona-Lasinio model. We address the $mathrm{U}(1)_{mathrm{A}}$ axial anomaly by including the Kobayashi-Maskawa-t Hooft interaction regularized by our basis. We present the structures of the pion, the kaon, the eta meson, and the eta-prime meson in terms of their valence light-front wave functions obtained from the eigenvalue problem of our light-front Hamiltonian.
We study the light-unflavored mesons as relativistic bound states in the nonperturbative Hamiltonian formalism of the basis light-front quantization (BLFQ) approach. The dynamics for the valence quarks of these mesons is specified by an effective Ham
Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes
Basis Light-front Quantization has been developed as a first-principles nonperturbative approach to quantum field theory. In this article we report our recent progress on the applications to the single electron and the positronium system in QED. We f
Basis Light-front Quantization (BLFQ) is a nonperturbative approach to quantum field theory. In this paper, we report our recent progress in applying BLFQ to the positronium system in QED and to the meson and the baryon system in QCD. We present prel
We produce the light-front wave functions (LFWFs) of the nucleon from a basis light-front ap- proach in the leading Fock sector representation. We solve for the mass eigenstates from a light-front effective Hamiltonian, which includes a confining pot