ﻻ يوجد ملخص باللغة العربية
Layered misfit cobaltate [Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], which emerged as an important thermoelectric material~[A. C. Masset et al. Phys. Rev. B, 62, 166 (2000)], has been explored extensively in the last decade for the exact mechanism behind its high Seebeck coefficient. Its complex crystal and electronic structures have inhibited consensus among such investigations. This situation has arisen mainly due to difficulties in accurate identification of the chemical state, spin state, and site symmetries in its two subsystems (rocksalt [Ca$_2$CoO$_3$] and triangular [CoO$_2$]). By employing resonant photoemission spectroscopy and x-ray absorption spectroscopy along with charge transfer multiplet simulations (at the Co ions), we have successfully identified the site symmetries, valencies and spin states of the Co in both layers. Our site-symmetry observations explain the experimental value of the high Seebeck coefficient and also confirm that the carriers hop within the rocksalt layer, which is in contrast to earlier reports where hopping within triangular CoO$_2$ layer has been held responsible for the large Seebeck coefficient.
[Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], a two dimensional misfit metallic compound, is famous for its rich phases accessed by temperature, $i.e.$ high temperature spin-state transition, metal-insulator transition (MIT) at intermediate temperature ($sim$ 1
Magnetism of a misfit layered cobaltite [Ca$_2$Co$_{4/3}$Cu$_{2/3}$O$_4$]$_x^{rm RS}$[CoO$_2$] ($x sim$ 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation ($mu^+$SR) experiment. A transition to an
We propose a minimal model resolving a puzzle of enigmatic correlations observed in sodium-rich Na$_x$CoO$_2$ where one expects a simple, free motion of the dilute $S=1/2$ holes doped into a band insulator NaCoO$_2$. The model also predicts singlet s
Transport property is investigated in [Ca$_{2}$CoO$_{3-delta}$]$_{0.62}$[CoO$_{2}$] single crystals obtained by varying annealing conditions. The $rho_{ab}(T)$ exhibits a resistivity minimum, and the temperature corresponding to this minimum increase
The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie