ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of oxygen content on the transport properties and magnetoresistance in [Ca$_{2}$CoO$_{3-delta}$]$_{0.62}$[CoO$_{2}$] single crystals

109   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport property is investigated in [Ca$_{2}$CoO$_{3-delta}$]$_{0.62}$[CoO$_{2}$] single crystals obtained by varying annealing conditions. The $rho_{ab}(T)$ exhibits a resistivity minimum, and the temperature corresponding to this minimum increases with the loss of oxygen content, indicative of the enhancement of spin density wave (SDW). Large negative magnetoresistance (MR) was observed in all single crystals [Ca$_{2}$CoO$_{3-delta}$]$_{0.62}$[CoO$_{2}$], while a magnetic-field-driven insulator-to-metal (IM) transition in oxygen annealed samples. These results suggest a ferromagnetic correlation in system enhanced by oxygen content. In addition, a low temperature thermal activation resistivity induced by fields was observed in single crystals annealed in oxygen atmosphere.



قيم البحث

اقرأ أيضاً

Magnetism of a misfit layered cobaltite [Ca$_2$Co$_{4/3}$Cu$_{2/3}$O$_4$]$_x^{rm RS}$[CoO$_2$] ($x sim$ 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation ($mu^+$SR) experiment. A transition to an incommensurate ({sf IC}) spin density wave ({sf SDW}) state was found below 180 K (= $T_{rm C}^{rm on}$); and a clear oscillation due to a static internal magnetic field was observed below 140 K (= $T_{rm C}$). Furthermore, an anisotropic behavior of the zero-field $mu^+$SR experiment indicated that the {sf IC-SDW} propagates in the $a$-$b$ plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca$_2$CoO$_3$]$_{0.62}^{rm RS}$[CoO$_2$], {sl i.e.}, Ca$_3$Co$_4$O$_9$. Since the {sf IC-SDW} field in [Ca$_2$Co$_{4/3}$Cu$_{2/3}$O$_4$]$_{0.62}^{rm RS}$[CoO$_2$] was approximately same to those in pure and doped [Ca$_2$CoO$_3$]$_{0.62}^{rm RS}$[CoO$_2$], it was concluded that the {sf IC-SDW} exist in the [CoO$_2$] planes.
In this study, we synthesized single crystals of Na$_{x}$CoO$_{2}$ with $xsim0.8$ using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single cryst al samples of stable Na ordered phases with $x=0.5-0.8$. Comparisons of the bulk magnetic properties with those observed in the Na ordered powder samples confirmed the high quality of these single crystal phases. The ab plane resistivity was measured for the Na ordered samples and it was quite reproducible for different sample batches. The data were analogous to those found in previous initial experimental studies on single crystals, but the lower residual resistivity and sharper anti-ferromagnetic transitions determined for our samples confirmed their higher quality.
117 - F. Hu , G. T. Liu , J. L. Luo 2005
We report measurements of the c-axis angular-dependent magnetoresistance (AMR) for a Na$_{0.48}$CoO$_{2}$ single crystal, with a magnetic field of 10 T rotating within Co-O planes. Below the metal-insulator transition temperature induced by the charg e ordering, the oscillation of the AMR is dominated by a two-fold rotational symmetry. The amplitudes of the oscillation corresponding to the four- and six-fold rotational symmetries are distinctive in low temperatures, but they merge into the background simultaneously at about 25 K. The six-fold oscillation originates naturally from the lattice symmetry. The observation of the four-fold rotational symmetry is consistent with the picture proposed by Choy, et al., that the Co lattice in the charge ordered state will split into two orthorhombic sublattice with one occupied by Co$^{3+}$ ions and the other by Co$^{4+}$ ions. We have also measured the c-axis AMR for Na$_{0.35}$CoO$_{2}$ and Na$_{0.85}$CoO$_{2}$ single crystals, and found no evidence for the existence of two- and four-fold symmetries.
356 - Abdul Ahad , K. Gautam , K. Dey 2020
[Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], a two dimensional misfit metallic compound, is famous for its rich phases accessed by temperature, $i.e.$ high temperature spin-state transition, metal-insulator transition (MIT) at intermediate temperature ($sim$ 1 00 K) and low temperature spin density wave (SDW). It enters into SDW phase below T$_{MIT}$ which becomes long range at 27 K. Information on the independent role of misfit layers (rocksalt/Ca$_2$CoO$_3$ & triangular/CoO$_2$) in these phases is scarce. By combining a set of complementary macroscopic (DC magnetization and resistivity) and microscopic (neutron diffraction and X-ray absorption fine structure spectroscopy) measurements on pure (CCO) and Tb substituted in the rocksalt layer of CCO (CCO1), magnetic correlations in both subsystems of this misfit compound are unraveled. CCO is found to exhibit glassiness, as well as exchange bias (EB) effects, while CCO1 does not exhibit glassiness, albeit it shows weaker EB effect. By combining local structure investigations from extended X-ray absorption fine structure (EXAFS) spectroscopy and neutron diffraction results on CCO, we confirm that the SDW arises in the CoO$_2$ layer. Our results show that the magnetocrystalline anisotropy associated with the rocksalt layer acts as a source of pinning, which is responsible for EB effect. Ferromagnetic clusters in the Ca$_2$CoO$_3$ affects SDW in CoO$_2$ and ultimately glassiness arises.
By means of muon spin spectroscopy, we have found that K$_{0.49}$CoO$_2$ crystals undergo successive magnetic transitions from a high-T paramagnetic state to a magnetic ordered state below 60 K and then to a second ordered state below 16 K, even thou gh K_{0.49}CoO_2 is metallic at least down to 4 K. An isotropic magnetic behavior and wide internal-field distributions suggest the formation of a commensurate helical spin density wave (SDW) state below 16 K, while a linear SDW state is likely to exist above 16 K. It was also found that K_{0.49}CoO_2 exhibits a further transition at 150 K presumably due to a change in the spin state of the Co ions. Since the T dependence of the internal-field below 60 K was similar to that for Na_{0.5}CoO_2, this suggests that magnetic order is more strongly affected by the Co valence than by the interlayer distance/interaction and/or the charge-ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا