ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data

156   0   0.0 ( 0 )
 نشر من قبل Wagner Barreto-Souza
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A new class of survival frailty models based on the Generalized Inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. Furthermore, our proposed class is robust and does not present some computational issues experienced by the gamma model. By assuming a piecewise-exponential baseline hazard function, which gives a semiparametric flavour for our frailty class, we propose an EM-algorithm for estimating the model parameters and provide an explicit expression for the information matrix. Simulated results are addressed to check the finite sample behavior of the EM-estimators and also to study the performance of the GIG models under misspecification. We apply our methodology to a TARGET (Therapeutically Applicable Research to Generate Effective Treatments) data about survival time of patients with neuroblastoma cancer and show some advantages of the GIG frailties over existing models in the literature.



قيم البحث

اقرأ أيضاً

The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem, due to the non-uniqueness of the solution, and many kinds of prior information have been used to constrain it. A combination o f smoothness (L2 norm-based) and sparseness (L1 norm-based) constraints is a flexible approach that have been pursued by important examples such as the Elastic Net (ENET) and mixed-norm (MXN) models. The former is used to find solutions with a small number of smooth non-zero patches, while the latter imposes sparseness and smoothness simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using computationally intensive Monte Carlo/Expectation Maximization methods. In this work we attempt to solve the EEG IP using a Bayesian framework for models based on mixtures of L1/L2 norms penalization functions (Laplace/Normal priors) such as ENET and MXN. We propose a Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using simple but realistic simulations we found that our methods are able to recover complicated source setups more accurately and with a more robust variable selection than the ENET and LASSO solutions using classical algorithms. We also solve the EEG IP using data coming from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods, as compared with other known methods such as LORETA, ENET and LASSO FUSION using the classical regularization approach.
Estimating causal effects for survival outcomes in the high-dimensional setting is an extremely important topic for many biomedical applications as well as areas of social sciences. We propose a new orthogonal score method for treatment effect estima tion and inference that results in asymptotically valid confidence intervals assuming only good estimation properties of the hazard outcome model and the conditional probability of treatment. This guarantee allows us to provide valid inference for the conditional treatment effect under the high-dimensional additive hazards model under considerably more generality than existing approaches. In addition, we develop a new Hazards Difference (HDi), estimator. We showcase that our approach has double-robustness properties in high dimensions: with cross-fitting, the HDi estimate is consistent under a wide variety of treatment assignment models; the HDi estimate is also consistent when the hazards model is misspecified and instead the true data generating mechanism follows a partially linear additive hazards model. We further develop a novel sparsity doubly robust result, where either the outcome or the treatment model can be a fully dense high-dimensional model. We apply our methods to study the treatment effect of radical prostatectomy versus conservative management for prostate cancer patients using the SEER-Medicare Linked Data.
Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture model s make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.
The hematopoietic system has a highly regulated and complex structure in which cells are organized to successfully create and maintain new blood cells. Feedback regulation is crucial to tightly control this system, but the specific mechanisms by whic h control is exerted are not completely understood. In this work, we aim to uncover the underlying mechanisms in hematopoiesis by conducting perturbation experiments, where animal subjects are exposed to an external agent in order to observe the system response and evolution. Developing a proper experimental design for these studies is an extremely challenging task. To address this issue, we have developed a novel Bayesian framework for optimal design of perturbation experiments. We model the numbers of hematopoietic stem and progenitor cells in mice that are exposed to a low dose of radiation. We use a differential equations model that accounts for feedback and feedforward regulation. A significant obstacle is that the experimental data are not longitudinal, rather each data point corresponds to a different animal. This model is embedded in a hierarchical framework with latent variables that capture unobserved cellular population levels. We select the optimum design based on the amount of information gain, measured by the Kullback-Leibler divergence between the probability distributions before and after observing the data. We evaluate our approach using synthetic and experimental data. We show that a proper design can lead to better estimates of model parameters even with relatively few subjects. Additionally, we demonstrate that the model parameters show a wide range of sensitivities to design options. Our method should allow scientists to find the optimal design by focusing on their specific parameters of interest and provide insight to hematopoiesis. Our approach can be extended to more complex models where latent components are used.
There are several cutting edge applications needing PCA methods for data on tori and we propose a novel torus-PCA method with important properties that can be generally applied. There are two existing general methods: tangent space PCA and geodesic P CA. However, unlike tangent space PCA, our torus-PCA honors the cyclic topology of the data space whereas, unlike geodesic PCA, our torus-PCA produces a variety of non-winding, non-dense descriptors. This is achieved by deforming tori into spheres and then using a variant of the recently developed principle nested spheres analysis. This PCA analysis involves a step of small sphere fitting and we provide an improved test to avoid overfitting. However, deforming tori into spheres creates singularities. We introduce a data-adaptive pre-clustering technique to keep the singularities away from the data. For the frequently encountered case that the residual variance around the PCA main component is small, we use a post-mode hunting technique for more fine-grained clustering. Thus in general, there are three successive interrelated key steps of torus-PCA in practice: pre-clustering, deformation, and post-mode hunting. We illustrate our method with two recently studied RNA structure (tori) data sets: one is a small RNA data set which is established as the benchmark for PCA and we validate our method through this data. Another is a large RNA data set (containing the small RNA data set) for which we show that our method provides interpretable principal components as well as giving further insight into its structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا