ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexible Models for Microclustering with Application to Entity Resolution

238   0   0.0 ( 0 )
 نشر من قبل Rebecca Steorts
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.



قيم البحث

اقرأ أيضاً

Traditional Bayesian random partition models assume that the size of each cluster grows linearly with the number of data points. While this is appealing for some applications, this assumption is not appropriate for other tasks such as entity resoluti on, modeling of sparse networks, and DNA sequencing tasks. Such applications require models that yield clusters whose sizes grow sublinearly with the total number of data points -- the microclustering property. Motivated by these issues, we propose a general class of random partition models that satisfy the microclustering property with well-characterized theoretical properties. Our proposed models overcome major limitations in the existing literature on microclustering models, namely a lack of interpretability, identifiability, and full characterization of model asymptotic properties. Crucially, we drop the classical assumption of having an exchangeable sequence of data points, and instead assume an exchangeable sequence of clusters. In addition, our framework provides flexibility in terms of the prior distribution of cluster sizes, computational tractability, and applicability to a large number of microclustering tasks. We establish theoretical properties of the resulting class of priors, where we characterize the asymptotic behavior of the number of clusters and of the proportion of clusters of a given size. Our framework allows a simple and efficient Markov chain Monte Carlo algorithm to perform statistical inference. We illustrate our proposed methodology on the microclustering task of entity resolution, where we provide a simulation study and real experiments on survey panel data.
241 - Weiping Ma , Yang Feng , Kani Chen 2013
Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A multi-step approach is developed that simultaneously estimates the parametric components and the nonparametric function. Under certain regularity conditions, it is shown that the resulting estimators is consistent and asymptotic normal for the parametric part and achieve the optimal rate of convergence for the nonparametric part when the bandwidth is suitably chosen. Simulation results are presented to demonstrate the effectiveness and finite-sample performance of the method. The method is also applied to a SELDI-TOF mass spectrometry data set from a study of liver cancer patients.
A new class of survival frailty models based on the Generalized Inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. Furthermore, our pr oposed class is robust and does not present some computational issues experienced by the gamma model. By assuming a piecewise-exponential baseline hazard function, which gives a semiparametric flavour for our frailty class, we propose an EM-algorithm for estimating the model parameters and provide an explicit expression for the information matrix. Simulated results are addressed to check the finite sample behavior of the EM-estimators and also to study the performance of the GIG models under misspecification. We apply our methodology to a TARGET (Therapeutically Applicable Research to Generate Effective Treatments) data about survival time of patients with neuroblastoma cancer and show some advantages of the GIG frailties over existing models in the literature.
115 - Shulei Wang , Ming Yuan 2016
Motivated by gene set enrichment analysis, we investigate the problem of combined hypothesis testing on a graph. We introduce a general framework to effectively use the structural information of the underlying graph when testing multivariate means. A new testing procedure is proposed within this framework. We show that the test is optimal in that it can consistently detect departure from the collective null at a rate that no other test could improve, for almost all graphs. We also provide general performance bounds for the proposed test under any specific graph, and illustrate their utility through several common types of graphs. Numerical experiments are presented to further demonstrate the merits of our approach.
This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical probl em where the parameter of interest lies in an individualized linear threshold. The goal of this paper is to develop a hypothesis testing procedure for the significance of a single element in this high-dimensional parameter as well as for the significance of a linear combination of this parameter. The difficulty dues to the high-dimensionality of the nuisance component in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both the null and local alternative hypotheses. In addition, we propose a double-smoothing approach to select the optimal bandwidth parameter in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct comprehensive simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. Finally, we apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا