ﻻ يوجد ملخص باللغة العربية
There are several cutting edge applications needing PCA methods for data on tori and we propose a novel torus-PCA method with important properties that can be generally applied. There are two existing general methods: tangent space PCA and geodesic PCA. However, unlike tangent space PCA, our torus-PCA honors the cyclic topology of the data space whereas, unlike geodesic PCA, our torus-PCA produces a variety of non-winding, non-dense descriptors. This is achieved by deforming tori into spheres and then using a variant of the recently developed principle nested spheres analysis. This PCA analysis involves a step of small sphere fitting and we provide an improved test to avoid overfitting. However, deforming tori into spheres creates singularities. We introduce a data-adaptive pre-clustering technique to keep the singularities away from the data. For the frequently encountered case that the residual variance around the PCA main component is small, we use a post-mode hunting technique for more fine-grained clustering. Thus in general, there are three successive interrelated key steps of torus-PCA in practice: pre-clustering, deformation, and post-mode hunting. We illustrate our method with two recently studied RNA structure (tori) data sets: one is a small RNA data set which is established as the benchmark for PCA and we validate our method through this data. Another is a large RNA data set (containing the small RNA data set) for which we show that our method provides interpretable principal components as well as giving further insight into its structure.
We present a novel technique for sparse principal component analysis. This method, named Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA), is based on the recently detailed formula for computing normed, squared eigenvector l
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlyin
Motivation: Although principal component analysis is frequently applied to reduce the dimensionality of matrix data, the method is sensitive to noise and bias and has difficulty with comparability and interpretation. These issues are addressed by imp
We consider the problem of decomposing a large covariance matrix into the sum of a low-rank matrix and a diagonally dominant matrix, and we call this problem the Diagonally-Dominant Principal Component Analysis (DD-PCA). DD-PCA is an effective tool f
Sparse principal component analysis (PCA) is an important technique for dimensionality reduction of high-dimensional data. However, most existing sparse PCA algorithms are based on non-convex optimization, which provide little guarantee on the global