ﻻ يوجد ملخص باللغة العربية
In this work, we study the properties of galaxies that are showing the inside-out assembly (which we call inside-out assembled galaxies; IOAGs), with the main aim to understand better their properties and morphological transformation. We analysed a sample of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8), with stellar masses in the range $log M_{star}=10.73-11.03$ $M_{odot{}}$ at $z < 0.1$, and analyze their location in the stellar mass-SFR and the color-stellar mass diagram. We found that IOAGs have different spectroscopic properties, most of them being classified either as AGN or composite. We found that the majority of our sources are located below the main sequence of star formation in the SFR-stellar mass diagram, and in the green valley or red sequence in the color-stellar mass diagram. We argue that IOAGs seem to correspond to the transition area where the galaxies are moving from star-forming to quiescent, and from the blue cloud to the red sequence and/or to recently quenched galaxies.
We study a sample of 48127 galaxies selected from the SDSS MPA-JHU catalogue, with $log M_{star}/M_{odot} = 10.73 - 11.03$ and $z<0.1$. Local galaxies in this stellar mass range have been shown to have systematically shorter assembly times within the
We compare the rest-frame ultraviolet and rest-frame optical morphologies of 2 < z < 3 star-forming galaxies in the GOODS-S field using Hubble Space Telescope WFC3 and ACS images from the CANDELS, GOODS, and ERS programs. We show that the distributio
Exploiting a sample of galaxies drawn from the XXL-N multiwavelength survey, we present an analysis of the stellar population properties of galaxies at 0.1<z<0.5, by studying galaxy fractions and the star formation rate (SFR)-stellar mass(M) relation
We derive two-dimensional dust attenuation maps at $sim1~mathrm{kpc}$ resolution from the UV continuum for ten galaxies on the $zsim2$ Star-Forming Main Sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further o
We update the spectral modeling code MAGPHYS to include a 2175AA absorption feature in its UV-to-near-IR dust attenuation prescription. This allows us to determine the strength of this feature and the shape of the dust attenuation curve in ~5000 star