ﻻ يوجد ملخص باللغة العربية
We compare the rest-frame ultraviolet and rest-frame optical morphologies of 2 < z < 3 star-forming galaxies in the GOODS-S field using Hubble Space Telescope WFC3 and ACS images from the CANDELS, GOODS, and ERS programs. We show that the distribution of sizes and concentrations for 1.90 < z < 2.35 galaxies selected via their rest-frame optical emission-lines are statistically indistinguishable from those of Lyman-alpha emitting systems found at z ~ 2.1 and z ~ 3.1. We also show that the z > 2 star-forming systems of all sizes and masses become smaller and more compact as one shifts the observing window from the UV to the optical. We argue that this offset is due to inside-out galaxy formation over the first ~ 2 Gyr of cosmic time.
Euclid, WFIRST, and HETDEX will make emission-line selected galaxies the largest observed constituent in the $z > 1$ universe. However, we only have a limited understanding of the physical properties of galaxies selected via their Ly$alpha$ or rest-f
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrar
We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravita
We present K-band spectra of rest-frame optical emission lines for 24 star-forming galaxies at z~3.2-3.7 using MOSFIRE on the Keck 1 telescope. Strong rest-frame optical [O III] and Hbeta emission lines were detected in 18 LBGs. The median flux ratio
We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<z<3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its comb