ترغب بنشر مسار تعليمي؟ اضغط هنا

AGN and Star-Formation Properties of Inside-out Assembled Galaxy Candidates at z<0.1

71   0   0.0 ( 0 )
 نشر من قبل Dejene Zewdie
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a sample of 48127 galaxies selected from the SDSS MPA-JHU catalogue, with $log M_{star}/M_{odot} = 10.73 - 11.03$ and $z<0.1$. Local galaxies in this stellar mass range have been shown to have systematically shorter assembly times within their inner regions ($<0.5~R_{50}$) when compared to that of the galaxy as a whole, contrary to lower or higher mass galaxies which show consistent assembly times at all radii. Hence, we refer to these galaxies as Inside-Out Assembled Galaxy (IOAG) candidates. We find that the majority of IOAG candidates with well-detected emission lines are classified as either AGN (40%) or composite (40%) in the BPT diagram. We also find that the majority of our sources are located below the main sequence of star formation, and within the green valley or red sequence. Most BPT-classified star-forming IOAG candidates have spiral morphologies and are in the main sequence, whereas Seyfert 2 and composites have mostly spiral morphologies but quiescent star formation rates (SFRs). We argue that a high fraction of IOAG candidates seem to be in the process of quenching, moving from the blue cloud to the red sequence. Those classified as AGN have systematically lower SFRs than star-forming galaxies suggesting that AGN activity may be related to this quenching. However, the spiral morphology of these galaxies remains in place, suggesting that the central star-formation is suppressed before the morphological transformation occurs.



قيم البحث

اقرأ أيضاً

In this work, we study the properties of galaxies that are showing the inside-out assembly (which we call inside-out assembled galaxies; IOAGs), with the main aim to understand better their properties and morphological transformation. We analysed a s ample of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8), with stellar masses in the range $log M_{star}=10.73-11.03$ $M_{odot{}}$ at $z < 0.1$, and analyze their location in the stellar mass-SFR and the color-stellar mass diagram. We found that IOAGs have different spectroscopic properties, most of them being classified either as AGN or composite. We found that the majority of our sources are located below the main sequence of star formation in the SFR-stellar mass diagram, and in the green valley or red sequence in the color-stellar mass diagram. We argue that IOAGs seem to correspond to the transition area where the galaxies are moving from star-forming to quiescent, and from the blue cloud to the red sequence and/or to recently quenched galaxies.
We derive two-dimensional dust attenuation maps at $sim1~mathrm{kpc}$ resolution from the UV continuum for ten galaxies on the $zsim2$ Star-Forming Main Sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further o bscuration in addition to the UV-based correction, though our sample does not include the most heavily obscured, massive galaxies. The individual rest-frame $V$-band dust attenuation (A$_{rm V}$) radial profiles scatter around an average profile that gently decreases from $sim1.8$ mag in the center down to $sim0.6$ mag at $sim3-4$ half-mass radii. We use these maps to correct UV- and H$alpha$-based star-formation rates (SFRs), which agree with each other. At masses $<10^{11}~M_{rm sun}$, the dust-corrected specific SFR (sSFR) profiles are on average radially constant at a mass-doubling timescale of $sim300~mathrm{Myr}$, pointing at a synchronous growth of bulge and disk components. At masses $>10^{11}~M_{rm sun}$, the sSFR profiles are typically centrally-suppressed by a factor of $sim10$ relative to the galaxy outskirts. With total central obscuration disfavored, this indicates that at least a fraction of massive $zsim2$ SFMS galaxies have started their inside-out star-formation quenching that will move them to the quenched sequence. In combination with other observations, galaxies above and below the ridge of the SFMS relation have respectively centrally-enhanced and centrally-suppressed sSFRs relative to their outskirts, supporting a picture where bulges are built due to gas `compaction that leads to a high central SFR as galaxies move towards the upper envelope of SFMS.
Radial age gradients hold the cumulative record of the multitude of physical processes driving the build-up of stellar populations and the ensuing star formation (SF) quenching process in galaxy bulges, therefore potentially sensitive discriminators between competing theoretical concepts on bulge formation and evolution. Based on spectral modeling of integral field spectroscopy data from the CALIFA survey, we derive mass- and light-weighted stellar age gradients ($ abla$(t,B)L,M) within the photometrically determined bulge radius (RB) of a representative sample of local face-on late-type galaxies that span 2.6 dex in stellar mass. Our analysis documents a trend for decreasing $ abla$(t,B)L,M with increasing M,T, with high-mass bulges predominantly showing negative age gradients and vice versa. The inversion from positive to negative $ abla$(t,B)L,M occurs at logM,T ~ 10, which roughly coincides with the transition from lower-mass bulges whose gas excitation is powered by SF to bulges classified as Composite, LINER or Seyfert. We discuss two limiting cases for the origin of radial age gradients in massive LTG bulges. The first assumes that the stellar age in the bulge is initially spatially uniform, thus the observed age gradients arise from an inside-out SF quenching (ioSFQ) front that is radially expanding with a mean velocity vq. In this case, the age gradients translate into a slow ioSFQ that lasts until z~2, suggesting mild negative feedback by SF or an AGN. If negative age gradients in massive bulges are not due to ioSFQ but primarily due to their inside-out formation process, then the standard hypothesis of quasi-monolithic bulge formation has to be discarded in favor of a scenario that involves gradual buildup of stellar mass over 2-3 Gyr through, e.g., inside-out SF and inward migration of SF clumps from the disk. In this case, rapid AGN-driven ioSFQ cannot be ruled out.
We search for galaxies with a strong Balmer break (Balmer Break Galaxies; BBGs) at $z sim 6$ over a 0.41 deg$^2$ effective area in the COSMOS field. Based on rich imaging data, including data obtained with the Atacama Large Millimeter/submillimeter A rray (ALMA), three candidates are identified by their extremely red $K - [3.6]$ colors as well as by non-detection in X-ray, optical, far-infrared (FIR), and radio bands. The non-detection in the deep ALMA observations suggests that they are not dusty galaxies but BBGs at $z sim 6$, although contamination from Active Galactic Nuclei (AGNs) at $z sim 0$ cannot be completely ruled out for the moment. Our spectral energy distribution (SED) analyses reveal that the BBG candidates at $z sim 6$ have stellar masses of $approx 5 times 10^{10} M_{odot}$ dominated by old stellar populations with ages of $gtrsim 700$ Myr. Assuming that all the three candidates are real BBGs at $z sim 6$, we estimate the stellar mass density (SMD) to be $2.4^{+2.3}_{-1.3} times 10^{4} M_{odot}$ Mpc$^{-3}$. This is consistent with an extrapolation from the lower redshift measurements. The onset of star formation in the three BBG candidates is expected to be several hundred million years before the observed epoch of $z sim 6$. We estimate the star-formation rate density (SFRD) contributed by progenitors of the BBGs to be 2.4 -- 12 $times 10^{-5} M_{odot}$ yr$^{-1} $Mpc$^{-3}$ at $z > 14$ (99.7% confidence range). Our result suggests a smooth evolution of the SFRD beyond $z = 8$.
The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star forming main sequence. Using ~487,000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (Sigma_SFR) and stellar mass (Sigma_mass) on kpc scales, representing a `resolved main sequence. Using a new metric (Delta Sigma_SFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star forming main sequence (Delta SFR). For galaxies above the global main sequence (positive Delta SFR) Delta Sigma_SFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (< 3 kpc, or 0.5 R_e). Moreover, galaxies that are at least a factor of three above the main sequence show diluted gas phase metallicities out to 2 R_e, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star forming main sequence there is an analogous deficit of star formation throughout the galaxy with the lowest values of Delta Sigma_SFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا