ﻻ يوجد ملخص باللغة العربية
Let $A$ be the ring of elements in an algebraic function field $K$ over a finite field $F_q$ which are integral outside a fixed place $infty$. In an earlier paper we have shown that the Drinfeld modular group $G=GL_2(A)$ has automorphisms which map congruence subgroups to non-congruence subgroups. Here we prove the existence of (uncountably many) normal genuine non-congruence subgroups, defined to be those which remain non-congruence under the action of every automorphism of $G$. In addition, for all but finitely many cases we evaluate $ngncs(G)$, the smallest index of a normal genuine non-congruence subgroup of $G$, and compare it to the minimal index of an arbitrary normal non-congruence subgroup.
Let $K$ be an algebraic function field with constant field ${mathbb F}_q$. Fix a place $infty$ of $K$ of degree $delta$ and let $A$ be the ring of elements of $K$ that are integral outside $infty$. We give an explicit description of the elliptic poin
We prove that a uniform pro-p group with no nonabelian free subgroups has a normal series with torsion-free abelian factors. We discuss this in relation to unique product groups. We also consider generalizations of Hantzsche-Wendt groups.
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{
Every sequence of orbifolds corresponding to pairwise non-conjugate congruence lattices in a higher rank semisimple group over local fields of zero characteristic is Benjamini--Schramm convergent to the universal cover.