ﻻ يوجد ملخص باللغة العربية
We present the phase diagram of free charges (electrons and holes), excitons, and biexcitons in highly excited CdSe nanoplatelets that predicts a crossover to a biexciton-dominated region at easily attainable low temperatures or high photoexcitation densities. Our findings extend previous work describing only free charges and excitons by introducing biexcitons into the equation of state, while keeping the exciton and biexciton binding energies constant in view of the relatively low density of free charges in this material. Our predictions are experimentally testable in the near future and offer the prospect of creating a quantum degenerate, and possibly even superfluid, biexciton gas. Furthermore, we also provide simple expressions giving analytical insight into the regimes of photoexcitation densities and temperatures in which excitons and biexcitons dominate the response of the nanoplatelets.
CdSe colloidal nanoplatelets are studied by spin-flip Raman scattering in magnetic fields up to 5 T. We find pronounced Raman lines shifted from the excitation laser energy by an electron Zeeman splitting. Their polarization selection rules correspon
Excitons in diluted magnetic semiconductors represent excellent probes for studying the magnetic properties of these materials. Various magneto-optical effects, which depend sensitively on the exchange interaction of the excitons with the localized s
We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various tempera
We measured the intrinsic ground-state exciton dephasing and population dynamics in colloidal quasi two-dimensional (2D) CdSe nanoplatelets at low temperature (5-50K) using transient resonant four-wave mixing in heterodyne detection. Our results indi
We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman s