ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells

507   0   0.0 ( 0 )
 نشر من قبل Elena Shornikova
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.

قيم البحث

اقرأ أيضاً

CdSe colloidal nanoplatelets are studied by spin-flip Raman scattering in magnetic fields up to 5 T. We find pronounced Raman lines shifted from the excitation laser energy by an electron Zeeman splitting. Their polarization selection rules correspon d to those expected for scattering mediated by excitons interacting with resident electrons. Surprisingly, Raman signals shifted by twice the electron Zeeman splitting are also observed. The theoretical analysis and experimental dependencies show that the mechanism responsible for the double flip involves two resident electrons interacting with a photoexcited exciton. Effects related to various orientations of the nanoplatelets in the ensemble and different orientations of the magnetic field are analyzed.
Excitons in diluted magnetic semiconductors represent excellent probes for studying the magnetic properties of these materials. Various magneto-optical effects, which depend sensitively on the exchange interaction of the excitons with the localized s pins of the magnetic ions can be used for probing. Here, we study core/shell CdSe/(Cd,Mn)S colloidal nanoplatelets hosting diluted magnetic semiconductor layers. The inclusion of the magnetic Mn$^{2+}$ ions is evidenced by three magneto-optical techniques using high magnetic fields up to 15 T: polarized photoluminescence, optically detected magnetic resonance, and spin-flip Raman scattering. In particular, information on the Mn$^{2+}$ concentration in the CdS shell layers can be obtained from the spin-lattice relaxation dynamics of the Mn$^{2+}$ spin system.
We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various tempera tures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton slitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques.
87 - Shiyao Wu , Kai Peng , Xin Xie 2020
We report a high-resolution photocurrent (PC) spectroscopy of a single self-assembled InAs/GaAs quantum dot (QD) embedded in an n-i-Schottky device with an applied vector magnetic field. The PC spectra of positively charged exciton (X$^+$) and neutra l exciton (X$^0$) are obtained by two-color resonant excitation. With an applied magnetic field in Voigt geometry, the double $Lambda$ energy level structure of X$^+$ and the dark states of X$^0$ are observed in PC spectra clearly. In Faraday geometry, the PC amplitude of X$^+$ decreases and then quenches with the increasing of the magnetic field, which provides a new way to determine the relative sign of the electron and the hole g-factors. With an applied vector magnetic field, the electron and the hole g-factor tensors of X$^+$ and X$^0$ are obtained. The anisotropy of the hole g-factors of both X$^+$ and X$^0$ is larger than that of the electron.
We present experimental and theoretical results on the high-quality single-layer MoS$_{2}$ which reveal the fine structure of charged excitons, i.e., trions. In the emission spectra we resolve and identify two trion peaks, T$_{1}$ and T$_{2}$, resemb ling the pair of singlet and triplet trion peaks (T$_S$ and T$_{T}$) in tungsten-based materials. However, in polarization-dependent photoluminescence measurements we identify these peaks as novel intra- and inter-valley singlet trions, constituting the trion fine structure distinct from that already known in bright and dark 2D materials with large conduction-band splitting induced by the spin-orbit coupling. We show that the trion energy splitting in MoS$_{2}$ is a sensitive probe of inter- and intra-valley carrier interaction. With additional support from theory we claim that the existence of these singlet trions combined with an anomalous excitonic g-factor and the characteristic temperature dependence of the emission spectra together suggest that monolayer MoS$_{2}$ has a dark excitonic ground state, despite having bright single-particle arrangement of spin-polarized conduction bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا