ﻻ يوجد ملخص باللغة العربية
CdSe colloidal nanoplatelets are studied by spin-flip Raman scattering in magnetic fields up to 5 T. We find pronounced Raman lines shifted from the excitation laser energy by an electron Zeeman splitting. Their polarization selection rules correspond to those expected for scattering mediated by excitons interacting with resident electrons. Surprisingly, Raman signals shifted by twice the electron Zeeman splitting are also observed. The theoretical analysis and experimental dependencies show that the mechanism responsible for the double flip involves two resident electrons interacting with a photoexcited exciton. Effects related to various orientations of the nanoplatelets in the ensemble and different orientations of the magnetic field are analyzed.
A theory of electron spin-flip Raman scattering (SFRS) is presented that describes the Raman spectral signals shifted by both single and twice the electron Zeeman energy under nearly resonant excitation of the heavy hole excitons in semiconductor nan
The dephasing time of the lowest bright exciton in CdSe/ZnS wurtzite quantum dots is measured from 5 K to 170 K and compared with density dynamics within the exciton fine structure using a sensitive three-beam four-wave-mixing technique unaffected by
We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman s
Excitons in diluted magnetic semiconductors represent excellent probes for studying the magnetic properties of these materials. Various magneto-optical effects, which depend sensitively on the exchange interaction of the excitons with the localized s
We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various tempera