ترغب بنشر مسار تعليمي؟ اضغط هنا

SKA LFAA Station Design Report

56   0   0.0 ( 0 )
 نشر من قبل Eloy de Lera Acedo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This report was submitted as part of the SKA Low Frequency Aperture Array Critical Design Review describing the design of the SKA1-LOW station that took place between 2013 and 2018. The SKA1 LOW field station is inscribed in a circular area having an effective station diameter (centre to centre) of 38 meters and has 256 SKALA4 elements. This document describes the electromagnetic design of the field station. In particular it describes the layout design and the electromagnetic modelling and characteristics of the station. This document describes the effects associated with the layout and array such as mutual coupling effects, side lobe pattern and beam shape (eg. smoothness, calibration models) and presents the state of the art of our ability to measure the array performance and validate the simulation work. The current LFAA field node requirements, derived from the SKA L1 requirements, have evolved over the last years since the LFAA PDR and the System Baseline Design. The SKA1 LOW field station has been designed to meet those requirements and has therefore tracked their evolution (eg. sensitivity requirements, array diameter, etc.). The aforementioned requirements represent a very tight space with a desire for very high sensitivity over a large frequency range (7 to 1) and wide field of view (90 degrees cone around zenith) while keeping the station diameter to a minimum, so as the filling factor but at the same time allowing for sufficient space between antennas to allow for easy maintenances, amongst many others. This results in a complex design.

قيم البحث

اقرأ أيضاً

QUBIC is an instrument aiming at measuring the B mode polarisation anisotropies at medium scales angular scales (30-200 multipoles). The search for the primordial CMB B-mode polarization signal is challenging, because of many difficulties: smallness of the expected signal, instrumental systematics that could possibly induce polarization leakage from the large E signal into B, brighter than anticipated polarized foregrounds (dust) reducing to zero the initial hope of finding sky regions clean enough to have a direct primordial B-modes observation. The QUBIC instrument is designed to address all aspects of this challenge with a novel kind of instrument, a Bolometric Interferometer, combining the background-limited sensitivity of Transition-Edge-Sensors and the control of systematics allowed by the observation of interference fringe patterns, while operating at two frequencies to disentangle polarized foregrounds from primordial B mode polarization. Its characteristics are described in details in this Technological Design Report.
The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include n ew 4 m$^2$ plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.
A concept of an axi-symmetric dish as antenna reflector for the next generation radio telescope - the Square Kilometre Array (SKA) - is presented. The reflector is based on the use of novel thermoplastic composite material (reinforced with carbon fib re) in the context of the telescope design with wide band single pixel feeds. The baseline of this design represents an array of 100s to 1000s reflector antennas of 15-m diameter and covers frequencies from <1 to 10 GHz. The purpose of our study is the analysis of the production cost of the dish and its performance in combination with a realistic wideband feed (such as the Eleven Antenna feed) over a wide frequency band and a range of elevation angles. The presented initial simulation results inidicate the potential of the proposed dish concept for low-cost and mass production and demonstrate sensitivity comparable to that of the presently considered off-set Gregorian reflector antenna with the same projected aperture area. We expect this observation to be independent of the choice of the feed, as several other single-pixel wideband feeds (that have been reported in the literature) have similar beamwidth and phase center location, both being rather constant with frequency.
The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth International Workshop on Neutrino Factories, super-beams, and beta- beams which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility.
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellence performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted t o the development (design and test of first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450MHz) but it is now aimed to cover the re-defined SKA-low band (50-350MHz) and furthermore the antenna is capable of performing up to 650MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45deg from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا