ترغب بنشر مسار تعليمي؟ اضغط هنا

SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations

22   0   0.0 ( 0 )
 نشر من قبل Eloy de Lera Acedo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellence performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450MHz) but it is now aimed to cover the re-defined SKA-low band (50-350MHz) and furthermore the antenna is capable of performing up to 650MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45deg from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.

قيم البحث

اقرأ أيضاً

62 - Marco Frailis 2014
The Data Access System (DAS) is a metadata and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.
This document was submitted as part of the SKA Low Frequency Aperture Array Critical Design Review describing the electromagnetic design of the SKA1-LOW antenna that took place between 2013 and 2018. The SKA1 LOW antenna has been developed over the last decade. Since 2011 an antenna of the type Log-Periodic Antenna that is now in its 4th iteration, SKALA4 (SKA Log-periodic Antenna v4), has been developed and was the selected candidate for SKA1-LOW after the Cost Control project efforts of 2017. This document describes the electromagnetic design of the antenna. In the submission for the antenna selection process, a detailed description of the antenna performance can be found. The Field Node Detailed Design Document, also submitted for the SKA LFAA Critical Design Review, presents a detailed design of the mechanics and the LNA as well.
This paper summarizes the design process and metrics for the latest antenna design for 2 radio telescopes, SKALA4 for the SKA1-LOW instrument and the V-feed for the HERA telescope. In the paper we briefly describe the main features of the antenna ele ment design and the most important figures of merit for both instruments. Finally, we show the response of both designs against some of these figures of merit.
The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observator y in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper will focus on a brief discussion of the as-built MWA system, highlighting several novel characteristics of the instrument, and a brief progress report (as of June 2012) on the final construction phase. Practical completion of the MWA is expected in November 2012, with commissioning commencing from approximately August 2012 and operations commencing near mid 2013. A brief description of recent science results from the MWA prototype instrument is given.
This paper is the first in a series of papers describing the impact of antenna instrumental artefacts on the 21-cm cosmology experiments to be carried out by the low frequency instrument (SKA1-LOW) of the Square Kilometre Array telescope (SKA), i.e., the Cosmic Dawn (CD) and the Epoch of Reionization (EoR). The smoothness of the passband response of the current log-periodic antenna being developed for the SKA1-LOW is analyzed using numerical electromagnetic simulations. The amplitude variations over the frequency range are characterized using low-order polynomials defined locally, in order to study the impact of the passband smoothness in the instrument calibration and CD/EoR Science. A solution is offered to correct a fast ripple found at 60~MHz during a test campaign at the SKA site at the Murchison Radio-astronomy Observatory, Western Australia in September 2015 with a minor impact on the telescopes performance and design. A comparison with the Hydrogen Epoch of Reionization Array antenna is also shown demonstrating the potential use of the SKA1-LOW antenna for the Delay Spectrum technique to detect the EoR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا