ترغب بنشر مسار تعليمي؟ اضغط هنا

QUBIC Technical Design Report

101   0   0.0 ( 0 )
 نشر من قبل Olivier Perdereau
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

QUBIC is an instrument aiming at measuring the B mode polarisation anisotropies at medium scales angular scales (30-200 multipoles). The search for the primordial CMB B-mode polarization signal is challenging, because of many difficulties: smallness of the expected signal, instrumental systematics that could possibly induce polarization leakage from the large E signal into B, brighter than anticipated polarized foregrounds (dust) reducing to zero the initial hope of finding sky regions clean enough to have a direct primordial B-modes observation. The QUBIC instrument is designed to address all aspects of this challenge with a novel kind of instrument, a Bolometric Interferometer, combining the background-limited sensitivity of Transition-Edge-Sensors and the control of systematics allowed by the observation of interference fringe patterns, while operating at two frequencies to disentangle polarized foregrounds from primordial B mode polarization. Its characteristics are described in details in this Technological Design Report.



قيم البحث

اقرأ أيضاً

The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based experiment that aims to detect B-mode polarisation anisotropies in the CMB at angular scales around the l=100 recombination peak. Systematic errors make ground-based observ ations of B modes at millimetre wavelengths very challenging and QUBIC mitigates these problems in a somewhat complementary way to other existing or planned experiments using the novel technique of bolometric interferometry. This technique takes advantage of the sensitivity of an imager and the systematic error control of an interferometer. A cold reflective optical combiner superimposes there-emitted beams from 400 aperture feedhorns on two focal planes. A shielding system composedof a fixed groundshield, and a forebaffle that moves with the instrument, limits the impact of local contaminants. The modelling, design, manufacturing and preliminary measurements of the optical components are described in this paper.
This document constitutes an excerpt of the Technical Design Report for the second stage of the Any Light Particle Search (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a Light Shining through a Wall experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.
In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati N ational Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic climate led to a formal cancelation of the project on Nov 27, 2012.
The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current worlds best limits for this process. The experiments sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.
Inflation Gravity Waves B-Modes polarization detection is the ultimate goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A big effort is undergoing with the deployment of many ground-based, balloon-bor ne and satellite experiments using different methods to separate this faint polarized component from the incoming radiation. One of the largely used technique is the Stokes Polarimetry that uses a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate the polarization components with low residual cross-polarization. This paper describes the QUBIC Stokes Polarimeter highlighting its design features and its performances. A common systematic with these devices is the generation of large spurious signals synchronous with the rotation and proportional to the emissivity of the optical elements. A key feature of the QUBIC Stokes Polarimeter is to operate at cryogenic temperature in order to minimize this unwanted component. Moving efficiently this large optical element at low temperature constitutes a big engineering challenge in order to reduce friction power dissipation. Big attention has been given during the designing phase to minimize the differential thermal contractions between parts. The rotation is driven by a stepper motor placed outside the cryostat to avoid thermal load dissipation at cryogenic temperature. The tests and the results presented in this work show that the QUBIC polarimeter can easily achieve a precision below 0.1{deg} in positioning simply using the stepper motor precision and the optical absolute encoder. The rotation induces only few mK of extra power load on the second cryogenic stage (~ 8 K).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا