ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Solution and Correlations of a Quantum Dimer Model on the Checkerboard Lattice

71   0   0.0 ( 0 )
 نشر من قبل Julia Wildeboer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present analytic results for a special dimer model on the {em non-bipartite} and {em non-planar} checkerboard lattice that does not allow for parallel dimers surrounding diagonal links. We {em exactly} calculate the number of closed packed dimer coverings on finite checkerboard lattices under periodic boundary conditions, and determine all dimer-dimer correlations. The latter are found to vanish beyond a certain distance. We find that this solvable model, despite being non-planar, is in close kinship with well-known paradigm-setting planar counterparts that allow exact mappings to $mathbb{Z}_2$ lattice gauge theory.



قيم البحث

اقرأ أيضاً

We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the devils staircase scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.
We consider the $(2+1)$-d $SU(2)$ quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance as sociated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the $mathbb{Z}(2)$ center of the $SU(2)$ gauge group) are confined to each other by fractionalized strings with a delocalized $mathbb{Z}(2)$ flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
286 - F. Y. Wu , Wen-Jer Tzeng , 2010
We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a Temperley bijection of solving single-monomer problems cannot be used. In this paper we derive the solution by mapping the problem onto one on close-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value $c=-2$.
180 - M. Sadrzadeh , A. Langari 2014
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phas e diagram of the model has been obtained by employing a plaquette operator approach (POA). The plaquette operator formalism bosonizes the model, in which a single boson is associated to each eigenstate of a plaquette and the inter-plaquette interactions define an effective Hamiltonian. The excitations of a plaquette would represent an-harmonic fluctuations of the model, which lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a plaquette ordered solid (RPS) state, which breaks lattice translational symmetry, in addition to a unique collinear phase for $J_2>J_1$. The bosonic excitation gap vanishes at the critical points to the N{e}el ($J_2 < J_1$) and collinear ($J_2 > J_1$) ordered phases, which defines the critical phase boundaries. At the homogeneous coupling ($J_2=J_1$) and its close neighborhood, the (canted) RPS state, established from an-harmonic fluctuations, lasts for low fields, $Gamma/J_1lesssim 0.3$, which is followed by a transition to the quantum paramagnet (polarized) phase at high fields. The transition from RPS state to the N{e}el phase is either a deconfined quantum phase transition or a first order one, however a continuous transition occurs between RPS and collinear phases.
58 - B. Doucot , L. B. Ioffe 2005
We construct the Hamiltonian description of the Chern-Simons theory with Z_n gauge group on a triangular lattice. We show that the Z_2 model can be mapped onto free Majorana fermions and compute the excitation spectrum. In the bulk the spectrum turns out to be gapless but acquires a gap if a magnetic term is added to the Hamiltonian. On a lattice edge one gets additional non-gauge invariant (matter) gapless degrees of freedom whose number grows linearly with the edge length. Therefore, a small hole in the lattice plays the role of a charged particle characterized by a non-trivial projective representation of the gauge group, while a long edge provides a decoherence mechanism for the fluxes. We discuss briefly the implications for the implementations of protected qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا