ﻻ يوجد ملخص باللغة العربية
We consider the $(2+1)$-d $SU(2)$ quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the $mathbb{Z}(2)$ center of the $SU(2)$ gauge group) are confined to each other by fractionalized strings with a delocalized $mathbb{Z}(2)$ flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif
We construct and study quantum trimer models and resonating SU(3)-singlet models on the kagome lattice, which generalize quantum dimer models and the Resonating Valence Bond wavefunctions to a trimer and SU(3) setting. We demonstrate that these model
We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully control
We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algo