ﻻ يوجد ملخص باللغة العربية
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phase diagram of the model has been obtained by employing a plaquette operator approach (POA). The plaquette operator formalism bosonizes the model, in which a single boson is associated to each eigenstate of a plaquette and the inter-plaquette interactions define an effective Hamiltonian. The excitations of a plaquette would represent an-harmonic fluctuations of the model, which lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a plaquette ordered solid (RPS) state, which breaks lattice translational symmetry, in addition to a unique collinear phase for $J_2>J_1$. The bosonic excitation gap vanishes at the critical points to the N{e}el ($J_2 < J_1$) and collinear ($J_2 > J_1$) ordered phases, which defines the critical phase boundaries. At the homogeneous coupling ($J_2=J_1$) and its close neighborhood, the (canted) RPS state, established from an-harmonic fluctuations, lasts for low fields, $Gamma/J_1lesssim 0.3$, which is followed by a transition to the quantum paramagnet (polarized) phase at high fields. The transition from RPS state to the N{e}el phase is either a deconfined quantum phase transition or a first order one, however a continuous transition occurs between RPS and collinear phases.
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond op
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength
We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin
We investigate the half-filled Hubbard chain with additional nearest- and next-nearest-neighbor spin exchange, J1 and J2, using bosonization and the density-matrix renormalization group. For J2 = 0 we find a spin-density-wave phase for all positive v