ترغب بنشر مسار تعليمي؟ اضغط هنا

A Heterogeneous Dynamical Graph Neural Networks Approach to Quantify Scientific Impact

212   0   0.0 ( 0 )
 نشر من قبل Xovee Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying and predicting the long-term impact of scientific writings or individual scholars has important implications for many policy decisions, such as funding proposal evaluation and identifying emerging research fields. In this work, we propose an approach based on Heterogeneous Dynamical Graph Neural Network (HDGNN) to explicitly model and predict the cumulative impact of papers and authors. HDGNN extends heterogeneous GNNs by incorporating temporally evolving characteristics and capturing both structural properties of attributed graph and the growing sequence of citation behavior. HDGNN is significantly different from previous models in its capability of modeling the node impact in a dynamic manner while taking into account the complex relations among nodes. Experiments conducted on a real citation dataset demonstrate its superior performance of predicting the impact of both papers and authors.



قيم البحث

اقرأ أيضاً

Several studies exist which use scientific literature for comparing scientific activities (e.g., productivity, and collaboration). In this study, using co-authorship data over the last 40 years, we present the evolutionary dynamics of multi level (i. e., individual, institutional and national) collaboration networks for exploring the emergence of collaborations in the research field of steel structures. The collaboration network of scientists in the field has been analyzed using author affiliations extracted from Scopus between 1970 and 2009. We have studied collaboration distribution networks at the micro-, meso- and macro-levels for the 40 years. We compared and analyzed a number of properties of these networks (i.e., density, centrality measures, the giant component and clustering coefficient) for presenting a longitudinal analysis and statistical validation of the evolutionary dynamics of steel structures collaboration networks. At all levels, the scientific collaborations network structures were central considering the closeness centralization while betweenness and degree centralization were much lower. In general networks density, connectedness, centralization and clustering coefficient were highest in marco-level and decreasing as the network size grow to the lowest in micro-level. We also find that the average distance between countries about two and institutes five and for authors eight meaning that only about eight steps are necessary to get from one randomly chosen author to another.
Scholars frequently employ relatedness measures to estimate the similarity between two different items (e.g., documents, authors, and institutes). Such relatedness measures are commonly based on overlapping references ($textit{i.e.}$, bibliographic c oupling) or citations ($textit{i.e.}$, co-citation) and can then be used with cluster analysis to find boundaries between research fields. Unfortunately, calculating a relatedness measure is challenging, especially for a large number of items, because the computational complexity is greater than linear. We propose an alternative method for identifying the research front that uses direct citation inspired by relatedness measures. Our novel approach simply replicates a node into two distinct nodes: a citing node and cited node. We then apply typical clustering methods to the modified network. Clusters of citing nodes should emulate those from the bibliographic coupling relatedness network, while clusters of cited nodes should act like those from the co-citation relatedness network. In validation tests, our proposed method demonstrated high levels of similarity with conventional relatedness-based methods. We also found that the clustering results of proposed method outperformed those of conventional relatedness-based measures regarding similarity with natural language processing--based classification.
57 - Lu Wang , Yu Song , Hong Huang 2021
In the real world, networks often contain multiple relationships among nodes, manifested as the heterogeneity of the edges in the networks. We convert the heterogeneous networks into multiple views by using each view to describe a specific type of re lationship between nodes, so that we can leverage the collaboration of multiple views to learn the representation of networks with heterogeneous edges. Given this, we propose a emph{regularized graph auto-encoders} (RGAE) model, committed to utilizing abundant information in multiple views to learn robust network representations. More specifically, RGAE designs shared and private graph auto-encoders as main components to capture high-order nonlinear structure information of the networks. Besides, two loss functions serve as regularization to extract consistent and unique information, respectively. Concrete experimental results on realistic datasets indicate that our model outperforms state-of-the-art baselines in practical applications.
140 - Qi Li , Luoyi Fu , Xinbing Wang 2021
The rapid development of modern science and technology has spawned rich scientific topics to research and endless production of literature in them. Just like X-ray imaging in medicine, can we intuitively identify the development limit and internal ev olution pattern of scientific topic from the relationship of massive knowledge? To answer this question, we collect 71431 seminal articles of topics that cover 16 disciplines and their citation data, and extracts the idea tree of each topic to restore the structure of the development of 71431 topic networks from scratch. We define the Knowledge Entropy (KE) metric, and the contribution of high knowledge entropy nodes to increase the depth of the idea tree is regarded as the basis for topic development. By observing X-ray images of topics, We find two interesting phenomena: (1) Even though the scale of topics may increase unlimitedly, there is an insurmountable cap of topic development: the depth of the idea tree does not exceed 6 jumps, which coincides with the classical Six Degrees of Separation! (2) It is difficult for a single article to contribute more than 3 jumps to the depth of its topic, to this end, the continuing increase in the depth of the idea tree needs to be motivated by the influence relay of multiple high knowledge entropy nodes. Through substantial statistical fits, we derive a unified quantitative relationship between the change in topic depth ${Delta D}^t(v)$ and the change in knowledge entropy over time ${KE}^tleft(vright)$ of the article $v$ driving the increase in depth in the topic: ${Delta D}^t(v) approx log frac{KE^{t}(v)}{left(t-t_{0}right)^{1.8803}}$ , which can effectively portray evolution patterns of topics and predict their development potential. The various phenomena found by scientific x-ray may provide a new paradigm for explaining and understanding the evolution of science and technology.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low -dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا