ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Heterogeneous Edges to Represent Networks with Graph Auto-Encoder

58   0   0.0 ( 0 )
 نشر من قبل Yu Song
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the real world, networks often contain multiple relationships among nodes, manifested as the heterogeneity of the edges in the networks. We convert the heterogeneous networks into multiple views by using each view to describe a specific type of relationship between nodes, so that we can leverage the collaboration of multiple views to learn the representation of networks with heterogeneous edges. Given this, we propose a emph{regularized graph auto-encoders} (RGAE) model, committed to utilizing abundant information in multiple views to learn robust network representations. More specifically, RGAE designs shared and private graph auto-encoders as main components to capture high-order nonlinear structure information of the networks. Besides, two loss functions serve as regularization to extract consistent and unique information, respectively. Concrete experimental results on realistic datasets indicate that our model outperforms state-of-the-art baselines in practical applications.



قيم البحث

اقرأ أيضاً

149 - Hao Peng , Jianxin Li , Qiran Gong 2019
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, m ining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.
211 - Fan Zhou , Xovee Xu , Ce Li 2020
Quantifying and predicting the long-term impact of scientific writings or individual scholars has important implications for many policy decisions, such as funding proposal evaluation and identifying emerging research fields. In this work, we propose an approach based on Heterogeneous Dynamical Graph Neural Network (HDGNN) to explicitly model and predict the cumulative impact of papers and authors. HDGNN extends heterogeneous GNNs by incorporating temporally evolving characteristics and capturing both structural properties of attributed graph and the growing sequence of citation behavior. HDGNN is significantly different from previous models in its capability of modeling the node impact in a dynamic manner while taking into account the complex relations among nodes. Experiments conducted on a real citation dataset demonstrate its superior performance of predicting the impact of both papers and authors.
Automatic melody generation has been a long-time aspiration for both AI researchers and musicians. However, learning to generate euphonious melodies has turned out to be highly challenging. This paper introduces 1) a new variant of variational autoen coder (VAE), where the model structure is designed in a modularized manner in order to model polyphonic and dynamic music with domain knowledge, and 2) a hierarchical encoding/decoding strategy, which explicitly models the dependency between melodic features. The proposed framework is capable of generating distinct melodies that sounds natural, and the experiments for evaluating generated music clips show that the proposed model outperforms the baselines in human evaluation.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
90 - Xin-Jian Xu , Cheng Chen , 2021
Identifying communities in networks is a fundamental and challenging problem of practical importance in many fields of science. Current methods either ignore the heterogeneous distribution of nodal degrees or assume prior knowledge of the number of c ommunities. Here we propose an efficient hypothesis test for community detection based on quantifying dissimilarities between graphs. Given a random graph, the null hypothesis is that it is of degree-corrected Erd{o}s-R{e}nyi type. We compare the dissimilarity between them by a measure incorporating the vertex distance distribution, the clustering coefficient distribution, and the alpha-centrality distribution, which is used for our hypothesis test. We design a two-stage bipartitioning algorithm to uncover the number of communities and the corresponding structure simultaneously. Experiments on synthetic and real networks show that our method outperforms state-of-the-art ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا