ﻻ يوجد ملخص باللغة العربية
The average kissing number of $mathbb{R}^n$ is the supremum of the average degrees of contact graphs of packings of finitely many balls (of any radii) in $mathbb{R}^n$. We provide an upper bound for the average kissing number based on semidefinite programming that improves previous bounds in dimensions $3, ldots, 9$. A very simple upper bound for the average kissing number is twice the kissing number; in dimensions $6, ldots, 9$ our new bound is the first to improve on this simple upper bound.
This paper investigates the behaviour of the kissing number $kappa(n, r)$ of congruent radius $r > 0$ spheres in $mathbb{S}^n$, for $ngeq 2$. Such a quantity depends on the radius $r$, and we plot the approximate graph of $kappa(n, r)$ with relativel
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in $mathbb{H}^n$, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing function $kappa(n, r)$ which depends on the radius $r
In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use
In this note, we give a short solution of the kissing number problem in dimension three.
Semidefinite programs (SDPs) are a fundamental class of optimization problems with important recent applications in approximation algorithms, quantum complexity, robust learning, algorithmic rounding, and adversarial deep learning. This paper present