ﻻ يوجد ملخص باللغة العربية
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in $mathbb{H}^n$, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing function $kappa(n, r)$ which depends on the radius $r$. After we obtain some theoretical lower and upper bounds for $kappa(n, r)$, we study their asymptotic behaviour and show, in particular, that $lim_{rto infty} frac{log kappa(n,r)}{r} = n-1$. Finally, we compare them with the numeric upper bounds obtained by solving a suitable semidefinite program.
This paper investigates the behaviour of the kissing number $kappa(n, r)$ of congruent radius $r > 0$ spheres in $mathbb{S}^n$, for $ngeq 2$. Such a quantity depends on the radius $r$, and we plot the approximate graph of $kappa(n, r)$ with relativel
In this note, we give a short solution of the kissing number problem in dimension three.
The average kissing number of $mathbb{R}^n$ is the supremum of the average degrees of contact graphs of packings of finitely many balls (of any radii) in $mathbb{R}^n$. We provide an upper bound for the average kissing number based on semidefinite pr
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in hyperbolic $mathbb{H}^n$ and spherical $mathbb{S}^n$ spaces, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing functio
In 1969, Fejes Toth conjectured that in Euclidean 3-space any packing of equal balls such that each ball is touched by twelve others consists of hexagonal layers. This article verifies this conjecture.