ترغب بنشر مسار تعليمي؟ اضغط هنا

A short solution of the kissing number problem in dimension three

137   0   0.0 ( 0 )
 نشر من قبل Alexey Glazyrin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Alexey Glazyrin




اسأل ChatGPT حول البحث

In this note, we give a short solution of the kissing number problem in dimension three.



قيم البحث

اقرأ أيضاً

This paper investigates the behaviour of the kissing number $kappa(n, r)$ of congruent radius $r > 0$ spheres in $mathbb{S}^n$, for $ngeq 2$. Such a quantity depends on the radius $r$, and we plot the approximate graph of $kappa(n, r)$ with relativel y high accuracy by using new upper and lower bounds that are produced via semidefinite programming and by using spherical codes, respectively.
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in $mathbb{H}^n$, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing function $kappa(n, r)$ which depends on the radius $r $. After we obtain some theoretical lower and upper bounds for $kappa(n, r)$, we study their asymptotic behaviour and show, in particular, that $lim_{rto infty} frac{log kappa(n,r)}{r} = n-1$. Finally, we compare them with the numeric upper bounds obtained by solving a suitable semidefinite program.
The average kissing number of $mathbb{R}^n$ is the supremum of the average degrees of contact graphs of packings of finitely many balls (of any radii) in $mathbb{R}^n$. We provide an upper bound for the average kissing number based on semidefinite pr ogramming that improves previous bounds in dimensions $3, ldots, 9$. A very simple upper bound for the average kissing number is twice the kissing number; in dimensions $6, ldots, 9$ our new bound is the first to improve on this simple upper bound.
162 - Thomas C. Hales 2012
In 1969, Fejes Toth conjectured that in Euclidean 3-space any packing of equal balls such that each ball is touched by twelve others consists of hexagonal layers. This article verifies this conjecture.
Applying circle inversion on a square grid filled with circles, we obtain a configuration that we call a fabric of kissing circles. The configuration and its components, which are two orthogonal frames and two orthogonal families of chains, are in so me way connected to classical geometric configurations such as the arbelos or the Pappus chain, or the Apollonian packing from the 20th century. In this paper, we build the fabric and list some of the obvious properties that result from this construction. Next, we focus on the curvature inside the individual components: we show that the curvatures of the frame circles form a doubly infinite arithmetic sequence (bi-sequence), whereas the curvatures of the circles of each chain are arranged in a quadratic bi-sequence. Because solving geometric sangaku problems was a gateway to our discovery of the fabric, we conclude this paper with two sangaku problems and their solutions using our results on curvatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا