ﻻ يوجد ملخص باللغة العربية
We study the $r$-complex contagion influence maximization problem. In the influence maximization problem, one chooses a fixed number of initial seeds in a social network to maximize the spread of their influence. In the $r$-complex contagion model, each uninfected vertex in the network becomes infected if it has at least $r$ infected neighbors. In this paper, we focus on a random graph model named the stochastic hierarchical blockmodel, which is a special case of the well-studied stochastic blockmodel. When the graph is not exceptionally sparse, in particular, when each edge appears with probability $omega(n^{-(1+1/r)})$, under certain mild assumptions, we prove that the optimal seeding strategy is to put all the seeds in a single community. This matches the intuition that in a nonsubmodular cascade model placing seeds near each other creates synergy. However, it sharply contrasts with the intuition for submodular cascade models (e.g., the independent cascade model and the linear threshold model) in which nearby seeds tend to erode each others effects. Our key technique is a novel time-asynchronized coupling of four cascade processes. Finally, we show that this observation yields a polynomial time dynamic programming algorithm which outputs optimal seeds if each edge appears with a probability either in $omega(n^{-(1+1/r)})$ or in $o(n^{-2})$.
We consider the problem of maximizing the spread of influence in a social network by choosing a fixed number of initial seeds, formally referred to as the influence maximization problem. It admits a $(1-1/e)$-factor approximation algorithm if the inf
In this paper we consider the distributed linear quadratic control problem for networks of agents with single integrator dynamics. We first establish a general formulation of the distributed LQ problem and show that the optimal control gain depends o
Forecasting high-dimensional time series plays a crucial role in many applications such as demand forecasting and financial predictions. Modern datasets can have millions of correlated time-series that evolve together, i.e they are extremely high dim
Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called seeding). In many applications, due to users privacy concern, overwhelming network scale etc., it is hard to target any user in
The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they beco