ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Linear Quadratic Optimal Control: Compute Locally and Act Globally

79   0   0.0 ( 0 )
 نشر من قبل Junjie Jiao
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the distributed linear quadratic control problem for networks of agents with single integrator dynamics. We first establish a general formulation of the distributed LQ problem and show that the optimal control gain depends on global information on the network. Thus, the optimal protocol can only be computed in a centralized fashion. In order to overcome this drawback, we propose the design of protocols that are computed in a decentralized way. We will write the global cost functional as a sum of local cost functionals, each associated with one of the agents. In order to achieve good performance of the controlled network, each agent then computes its own local gain, using sampled information of its neighboring agents. This decentralized computation will only lead to suboptimal global network behavior. However, we will show that the resulting network will reach consensus. A simulation example is provided to illustrate the performance of the proposed protocol.



قيم البحث

اقرأ أيضاً

This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide ntical agent dynamics and an associated global quadratic cost functional, our objective is to design suboptimal distributed control laws that guarantee the controlled network to reach consensus and the associated cost to be smaller than an a priori given upper bound. We first analyze the suboptimality for a given linear system and then apply the results to linear multiagent systems. Two design methods are then provided to compute such suboptimal distributed controllers, involving the solution of a single Riccati inequality of dimension equal to the dimension of the agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian. Furthermore, we relax the requirement of exact knowledge of the smallest nonzero and largest eigenvalue of the graph Laplacian by using only lower and upper bounds on these eigenvalues. Finally, a simulation example is provided to illustrate our design method.
The linear-quadratic regulator (LQR) is an efficient control method for linear and linearized systems. Typically, LQR is implemented in minimal coordinates (also called generalized or joint coordinates). However, other coordinates are possible and re cent research suggests that there may be numerical and control-theoretic advantages when using higher-dimensional non-minimal state parameterizations for dynamical systems. One such parameterization is maximal coordinates, in which each link in a multi-body system is parameterized by its full six degrees of freedom and joints between links are modeled with algebraic constraints. Such constraints can also represent closed kinematic loops or contact with the environment. This paper investigates the difference between minimal- and maximal-coordinate LQR control laws. A case study of applying LQR to a simple pendulum and simulations comparing the basins of attraction and tracking performance of minimal- and maximal-coordinate LQR controllers suggest that maximal-coordinate LQR achieves greater robustness and improved tracking performance compared to minimal-coordinate LQR when applied to nonlinear systems.
95 - Jingrui Sun , Zhen Wu , Jie Xiong 2021
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process es are present in the cost functional. Based on a Hilbert space method, necessary and sufficient conditions are derived for the solvability of the problem, and a general approach for constructing optimal controls is developed. The crucial step in this construction is to establish the solvability of a Riccati-type equation, which is accomplished under a fairly weak condition by investigating the connection with forward stochastic LQ optimal control problems.
100 - Na Li , Xun Li , Jing Peng 2020
This paper applies a reinforcement learning (RL) method to solve infinite horizon continuous-time stochastic linear quadratic problems, where drift and diffusion terms in the dynamics may depend on both the state and control. Based on Bellmans dynami c programming principle, an online RL algorithm is presented to attain the optimal control with just partial system information. This algorithm directly computes the optimal control rather than estimating the system coefficients and solving the related Riccati equation. It just requires local trajectory information, greatly simplifying the calculation processing. Two numerical examples are carried out to shed light on our theoretical findings.
We study the $r$-complex contagion influence maximization problem. In the influence maximization problem, one chooses a fixed number of initial seeds in a social network to maximize the spread of their influence. In the $r$-complex contagion model, e ach uninfected vertex in the network becomes infected if it has at least $r$ infected neighbors. In this paper, we focus on a random graph model named the stochastic hierarchical blockmodel, which is a special case of the well-studied stochastic blockmodel. When the graph is not exceptionally sparse, in particular, when each edge appears with probability $omega(n^{-(1+1/r)})$, under certain mild assumptions, we prove that the optimal seeding strategy is to put all the seeds in a single community. This matches the intuition that in a nonsubmodular cascade model placing seeds near each other creates synergy. However, it sharply contrasts with the intuition for submodular cascade models (e.g., the independent cascade model and the linear threshold model) in which nearby seeds tend to erode each others effects. Our key technique is a novel time-asynchronized coupling of four cascade processes. Finally, we show that this observation yields a polynomial time dynamic programming algorithm which outputs optimal seeds if each edge appears with a probability either in $omega(n^{-(1+1/r)})$ or in $o(n^{-2})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا