ﻻ يوجد ملخص باللغة العربية
In this paper we consider the distributed linear quadratic control problem for networks of agents with single integrator dynamics. We first establish a general formulation of the distributed LQ problem and show that the optimal control gain depends on global information on the network. Thus, the optimal protocol can only be computed in a centralized fashion. In order to overcome this drawback, we propose the design of protocols that are computed in a decentralized way. We will write the global cost functional as a sum of local cost functionals, each associated with one of the agents. In order to achieve good performance of the controlled network, each agent then computes its own local gain, using sampled information of its neighboring agents. This decentralized computation will only lead to suboptimal global network behavior. However, we will show that the resulting network will reach consensus. A simulation example is provided to illustrate the performance of the proposed protocol.
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide
The linear-quadratic regulator (LQR) is an efficient control method for linear and linearized systems. Typically, LQR is implemented in minimal coordinates (also called generalized or joint coordinates). However, other coordinates are possible and re
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process
This paper applies a reinforcement learning (RL) method to solve infinite horizon continuous-time stochastic linear quadratic problems, where drift and diffusion terms in the dynamics may depend on both the state and control. Based on Bellmans dynami
We study the $r$-complex contagion influence maximization problem. In the influence maximization problem, one chooses a fixed number of initial seeds in a social network to maximize the spread of their influence. In the $r$-complex contagion model, e