ﻻ يوجد ملخص باللغة العربية
Suppose $k ge 2$ is an integer. Let $Y_k$ be the poset with elements $x_1, x_2, y_1, y_2, ldots, y_{k-1}$ such that $y_1 < y_2 < cdots < y_{k-1} < x_1, x_2$ and let $Y_k$ be the same poset but all relations reversed. We say that a family of subsets of $[n]$ contains a copy of $Y_k$ on consecutive levels if it contains $k+1$ subsets $F_1, F_2, G_1, G_2, ldots, G_{k-1}$ such that $G_1subset G_2 subset cdots subset G_{k-1} subset F_1, F_2$ and $|F_1| = |F_2| = |G_{k-1}|+1 =|G_{k-2}|+ 2= cdots = |G_{1}|+k-1$. If both $Y_k$ and $Y_k$ on consecutive levels are forbidden, the size of the largest such family is denoted by $mathrm{La}_{mathrm{c}}(n, Y_k, Y_k)$. In this paper, we will determine the exact value of $mathrm{La}_{mathrm{c}}(n, Y_k, Y_k)$.
Given posets $mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k$, let the {em Boolean Ramsey number} $R(mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k)$ be the minimum number $n$ such that no matter how we color the elements in the Boolean lattice $mathbf{B}_n$ w
Let $B_n$ be the poset generated by the subsets of $[n]$ with the inclusion as relation and let $P$ be a finite poset. We want to embed $P$ into $B_n$ as many times as possible such that the subsets in different copies are incomparable. The maximum n
For a graph $G,$ we consider $D subset V(G)$ to be a porous exponential dominating set if $1le sum_{d in D}$ $left( frac{1}{2} right)^{text{dist}(d,v) -1}$ for every $v in V(G),$ where dist$(d,v)$ denotes the length of the smallest $dv$ path. Similar
Frankl and Furedi (1989) conjectured that the $r$-graph with $m$ edges formed by taking the first $m$ sets in the colex ordering of ${mathbb N}^{(r)}$ has the largest graph-Lagrangian of all $r$-graphs with $m$ edges. In this paper, we establish some
For any graded poset $P$, we define a new graded poset, $mathcal E(P)$, whose elements are the edges in the Hasse diagram of P. For any group, $G$, acting on the boolean algebra, $B_n$, we conjecture that $mathcal E(B_n/G)$ is Peck. We prove that the