ﻻ يوجد ملخص باللغة العربية
For any graded poset $P$, we define a new graded poset, $mathcal E(P)$, whose elements are the edges in the Hasse diagram of P. For any group, $G$, acting on the boolean algebra, $B_n$, we conjecture that $mathcal E(B_n/G)$ is Peck. We prove that the conjecture holds for common cover transitive actions. We give some infinite families of common cover transitive actions and show that the common cover transitive actions are closed under direct and semidirect products.
Motivated by generalizing Khovanovs categorification of the Jones polynomial, we study functors $F$ from thin posets $P$ to abelian categories $mathcal{A}$. Such functors $F$ produce cohomology theories $H^*(P,mathcal{A},F)$. We find that CW posets,
The Pareto dominance relation of a preference profile is (the asymmetric part of) a partial order. For any integer n, the problem of the existence of an n-agent preference profile that generates the given Pareto dominance relation is to investigate t
We consider the problem of determining the maximum order of an induced vertex-disjoint union of cliques in a graph. More specifically, given some family of graphs $mathcal{G}$ of equal order, we are interested in the parameter $a(mathcal{G}) = min_{G
We consider 3 (weighted) posets associated with a graph G - the poset P(G) of distinct induced unlabelled subgraphs, the lattice Omega(G) of distinct unlabelled graphs induced by connected partitions, and the poset Q(G) of distinct unlabelled edge-su
Three families of posets depending on a nonnegative integer parameter $m$ are introduced. The underlying sets of these posets are enumerated by the $m$-Fuss Catalan numbers. Among these, one is a generalization of Stanley lattices and another one is