ﻻ يوجد ملخص باللغة العربية
Given posets $mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k$, let the {em Boolean Ramsey number} $R(mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k)$ be the minimum number $n$ such that no matter how we color the elements in the Boolean lattice $mathbf{B}_n$ with $k$ colors, there always exists a poset $mathbf{P}_i$ contained in $mathbf{B}_n$ whose elements are all colored with $i$. This function was first introduced by Axenovich and Walzer~cite{AW}. Recently, many results on determining $R(mathbf{B}_m,mathbf{B}_n)$ have been published. In this paper, we will study the function $R(mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k)$ for each $mathbf{P}_i$s being the $V$-shaped poset. That is, a poset obtained by identifying the minimal elements of two chains. Another major result presented in the paper is to determine the minimal posets $mathbf{Q}$ contained in $mathbf{B}_n$, when $R(mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k)=n$ is determined, having the Ramsey property described in the previous paragraph. In addition, we define the {em Boolean rainbow Ramsey number} $RR(mathbf{P},mathbf{Q})$ the minimum number $n$ such that when arbitrarily coloring the elements in $mathbf{B}_n$, there always exists either a monochromatic $mathbf{P}$ or a rainbow $mathbf{Q}$ contained in $mathbf{B}_n$. The upper bound for $RR(mathbf{P},mathbf{A}_k)$ was given by Chang, Li, Gerbner, Methuku, Nagy, Patkos, and Vizer for general poset $mathbf{P}$ and $k$-element antichain $mathbf{A}_k$. We study the function for $mathbf{P}$ being the $V$-shaped posets in this paper as well.
A subposet $Q$ of a poset $Q$ is a textit{copy of a poset} $P$ if there is a bijection $f$ between elements of $P$ and $Q$ such that $x le y$ in $P$ iff $f(x) le f(y)$ in $Q$. For posets $P, P$, let the textit{poset Ramsey number} $R(P,P)$ be the sma
In 1964, ErdH{o}s, Hajnal and Moon introduced a saturation version of Turans classical theorem in extremal graph theory. In particular, they determined the minimum number of edges in a $K_r$-free, $n$-vertex graph with the property that the addition
Suppose $k ge 2$ is an integer. Let $Y_k$ be the poset with elements $x_1, x_2, y_1, y_2, ldots, y_{k-1}$ such that $y_1 < y_2 < cdots < y_{k-1} < x_1, x_2$ and let $Y_k$ be the same poset but all relations reversed. We say that a family of subsets o
In this note we study and obtain factorization theorems for colorings of matrices and Grassmannians over $mathbb{R}$ and ${mathbb{C}}$, which can be considered metr
Motivated by generalizing Khovanovs categorification of the Jones polynomial, we study functors $F$ from thin posets $P$ to abelian categories $mathcal{A}$. Such functors $F$ produce cohomology theories $H^*(P,mathcal{A},F)$. We find that CW posets,